1) I:PAMETMIWINT OF 'CEIH IN'NFIRJC: .

UNITED STATES ENTOMOLOQICAL CRNDYASSTOIT.
Bulletin No. 6.

GENERAL INDEX

 ANDSUPPLEMJENT

TO THE
NINE REPORTS
()N THE

INSECTS OF MISSOURI.

BY

CHARLES V. RILEY, M: A., Ph. D.

UNITED STATES ENTOMOLOGICAL COMMISSION.

Bulletin No. 6.

ENERAL INDEX AND

SUPPLEMENT

TO THE
NINE REPORTS

ON THE

iNsECTS OF MISSOURI.

MARINE BIOLOGICAL LABORATORY.

Received Shall 10"1489

Accession No.
Given by 16

Place,

[^0] oratory without the permission of the Trustees.

GOVERNMENT PRINTING OFFICE 。

MAICH 24, 1881.

INTRODUCTION.

The present Bulletin has been prepared in response to frequent suggestions from those having occasion to use the nine Ammal Reports on the Insects of Missouri, made by me, as State Entomologist, to the State Board of Agriculture, during the sears 1868 to 187i, inclusive. These Reports contain a good deal of matter anent the Cotton Worm, the Chinch Bug, the Rocky Mountain Locust, and other insects which the Commission has studied, and were published, as required by law, in the Amnual Reports of said State Board of Agriculture for the rears mentioned. That method of publication was always regretted by myself and by many others, inasmuch as the reports of the Board were generally rolumes of such bulk as to delay publication and render mailing expensive. By virtue of the fact that thes were distributed only to members of the State legislature and to State societies, access to them by persons outside the State of Missouri was extremely difficult ; while the State printing and press-work were, as a rule, of a rery unsatisfactory character. To aroid some of these difficulties it was my habit to have about 300 separate copies of the entomological portion printed on better paper, at my own expense, for distribution to correspondents both at home and abroad, and it is through these, principally, that the Reports have been accessible outside the State.

The demand for the Reports and the manner in which they have been used and commended by subsequent writers can but be gratifying to the author, who feels that whaterer of commendation they deserve is due to the fact that they embody results of original investigation. Ther contain some matter that, with present light, he would expunge, and the earlier volumes, more particularly, contain imperfections which no one appreciates more fully than himself. Many of these are attributable to isolation from other working entomologists at the time, as well as to the almost absolute dearth of entomological works of reference in any of the libraries of Saint Louis.

The general plan of the Reprorts, which were adressel to the intelli-
gent cultivator of the soil rather than to the naturalist, is set forth in the following passage from the introduction to the first:
Fully aware that I write for those who, as a rule, are unversed in entomology, I have endeavored to treat of each insect with as little of the nomenclature of science as is consistent with clearness of expression. Yet, as much that is of scientific interest, such as descriptions of new species, must necessarily be inserted, I have had such descriptions printed in a type of smaller size than the text, so that it can be skipped ${ }_{i}$ f desirable, at the time of reading, and easily referred to for comparison, with specimens which one is desirous of naming. I have also endeavored to illnstrate, as far as possible, the insects of which this report treats, believing that good illustration forms the basis of successful teaching in a science with which the general husbandman is not expected to be acquainted; for the eye conveys to the mind, in an instant, what the ear would fail to do in an hour. The practical man cares little to what genus or family an insect belongs, so long as he can tell whether it be friend or foe. He must become familiarized with the insects about him withont having necessarily to overcome scientific detail and technicality.
I have made no effort at a systematic arrangement of the insects treated of. Indeed, that were useless for the purpose in view; but, in order that the reader may refer the more readily to any particular insect which interests hin, I have separated them into three series-Noxious, Beveficial, and Inxoxious-and attached a very full index. For the benefit of those who are making a study of entomology, I have also given, with each species, the Order and Family to which it belongs, in parenthesis under each heading.
So far as possible, I have used a common name for each insect, knowing that the scientific name is remembered with greater difficulty, and is, consequently, distasteful to many. But as popular names are rery loosely applied, and the same name often refers to different insects, in different localities, a great deal of confusion would ensue without the scientific name, which is, therefore, invariably added, for the most part, in parentheses, so that it may be skipped without interfering in any way with the sense of the text.

In order to add value to this general index, I have brought together tables of contents of the nine volumes and given corrections and some notes and additions. I have also reproduced the descriptions of new species, and added a list of descriptions of adolescent states, of descriptions of species not new, of illustrations by reports, of illustrations by classification, and of food-plants.
The Reports were independently paginated, and the separate copies were often distributed before the Agricultural Report was off the press. The date of publication and distribution is given for each in the tables of contents. The nomenclature of the Reports is retained in this Bulletin, the synonomy being indicated in the notes and additions and with the reproduced descriptions. The name of the author of the species and not of the genus was always given as anthority, and in the later Reports I endeavored to indicate whether or not the insect was described muder the generic name which it bears, by adding the authority without a comma when the specific name is coupled with the generic name under which it was first published - e.f., Phycita nebulo Walsh - but placed it in parentheses when a different generic name was used than that under which the insect was first deseribed-e.g., Acrobasis nebulo (Walsh) except where the whole name was already in parentheses when a comma
was used for the same purpose - e.g. (Acrobusis nebulo, Walsh). The same plan is adopted thronghout this Bulletin.

It had always been my intention to publish a tenth volume and to end the decade with a review of, and general index to, the whole series. Indeed, an appropriation for the tenth year's work was made and the tenth report would have been duly issued had I not been called at the time to my present work for the General Gorernment. This Bulletin is, in a measure, the fulfilment of that intention, and is issued in the hope that it will render the Reports more serviceable to the student of insect life and to those having to deal with insects injurions to agriculture.

My thanks are due to Messrs. E. A. Schwarz and W. H. Patton, agents of the Commission, for aid in its preparation.
C. V. R.

Washington, D. C., March 1, 1881.

TABLESOFCONTENTS.

Neither of the first fire rolumes contaned a talle of contents, the plan of giving such haring been adopted with the sixth. Most of these tables are, therefore, prepared for this Bulletin, while those of the Sixth and Seventh Reports are amplified. Those of the last two volumes are reproduced as they were originally made.

REPORT I.

[Submitted December 2, 1868; published March, 1869.1
Introductory 3
NOXIOLS INSECTS.
The Bark-lice of the Apple-tree

Two specics known to occur in the United States, 7 - Harris's Bark-louse
not numerons enough to do material damage, i.7

The Oyster-shell Bark-Loure
Difference in the scales of the two species, 7 - Introlnction of the Orstershell Bark-lonse from Enrope and its spread in the United States, - Precantionary measures to prevent its introduction into Missouri, o Its habits studied by different observers in 1067, 9 - Seasonal notes on the development of the insect, 10 - Only one anmal brood in Missouri, 12 - Formation and nature of the scale, 12 - Rare occurrence of males, 14 -Difference of opinion amoug observers as to the mode of growth of the scale, 14 -Difficulty of explaining the spread of the insect from one tree to another, $\mathbf{1 5}$-Its occurrence upon other kinds of trees, 15 -Natural enemies, 16 -Artificial remedies, 16 - Examination of yonng trees before plauting, 16 - Washing with alkalies, etc., 17 Scrubbing the branches with a stifí brnsh, 17 - Fumigating, 17 - A_{p} plication of sheep-mamre, 17 - Washes in geueral ineffective, 17 - The insect can most successfully be fonght during three or four days of the year only, 18.

The Periodical Cicada

Its singular life history, 1- - Seventeen and thirteen year races, $19-$ The two races not disticet species. 19 - Two distinct forms occurring in both broods, 20 - Season of their appearance and disappearance, 22 - Natural histor and transformations, 22 - Ele vated chambers of the pmpa, 22 - The larvie frequently occurring at great depth in the gronnd, 24 - The operation of emerging from the pma, 24 - Only the males are capable of singing, 94 - Trees in which the females deposit their eggs, 24 - Morle of oriposition. 24 - The newly hatched larva, 25 - The Wr on the wings of the Cicada, 25 - Enemies, 26 - Fungns infesting the imago, 26 -The sting of the Cicada, 26 - Wide-spread fear of the insect on ac-
The Periodical Cicada-Continned.
Pal Cicada Continel.count of its supposed stinging powers, 26-Explanations of the sting,27 - Injury cansed by the insect, 29 - by the larva. 29 - by the imago,29 - Fraitless attempts to stop the injury, 30 - Chronological table ofall well-asecrtained broods in the United States, 30 - The insect willappear during the next 17 years somewhere in the United States everyyear except in 1873,41 - Number of broods that will appear in the next17 years in the different states, 42.
Apple-tree Borers 42of its injury, 43 - Its larva, 43 - Appearance of the inago, 43 - Thehole made loy the young larva, 44 - It remains nearly three ycars in thelarva state, 44 - Its pupa state, 44 -Remedies, 45 - Alkaline washes,45 - Killing the larva by hot water, 45 - Cutting out the larva, 46.
The Flat-headed Apple-thee Borer 46
Differences between it and the foregoing species, 46 - Halits of the beetle,
47 - Amount of injury caused by it, 47 - Parasite attacking it, 47 - Differences between it and the foregoing species, 46 - Habits of the beetle,
47 - Amount of injury caused by it, 47 - Parasite attacking it, 47 - Remedies, 47.
The Peach Borer- In. 1 by 42
The Rounib-headei Apple-tree Burer
The Rounib-headei Apple-tree Burer
It is more numerous in trees on high land than on low ground, 42-ExtentIts nature, 47 -Differences in the sexes, 48 - Remedies, 48 - The monnd-ing systen the best remedy, 48 -Testimons as to the value of themounding system, 48 - Other remedies, 49.
The Plum Curculio
Difference of opinion among authors on some points in its natural history,5050 - Reasons for this difference of opinion, 51 - Facts in its naturalhistory, 52-It causes the spread of the peach-rot, 52 - Fruit trees at-tacked and those not attacked by it, 53 - It may hibernate as larva orpupa, but does generally as imago, 53 - Mode of egg-lacing, 54-Ithas one amnual brood, 55 - Walsh's experiments to show that it is two-brooded, 55 - Natural remedies, 56 - No parasites known to infest it,56 -Enemies, 57; The Pennsylvania Soldier-beetle, and its larva, 57 ;Lacewing-larva, 57 ; The Subangular (iround-beetle 58; Ground-bee-the larva, probably of the Pennsylvania Ground-beetle, 59-Hogs asCurculio destroyers, 59 - Artificial remedies. 60 - Jarring the trees themost effectual method, 60 - Dr. Hull's Curcnlio catcher 60 - Lessonsfor the fruit-grower from the account of the Curculio, 62.
The Codling Moth or Apple Worm 62
It is common wherever apples are grown, 62 - Description of the insect inits different states, 63-Its life-history, 63-Other fruits attacked byit, 64 -Remedies, 65 -Picking up the falleu fruit, 65 -Entrappingthe worms the lest remedy, 66 - Trimble's hay band system and howto apply it, 65 -Attracting the moth by fires, 67.
Cut-worms67The natural history of twelve distinct species, 67 -Definition of the term"Cut-worm", 67-Habits of Cut-worms, 67 - Their natural historybriefly given, 68 - Difficulty of breeding them in captivity, 69 - Climb-ing Cut-worms, 69 - Injury done by them to orchards, 69 -Fruit treesand shrubs they attack, 70 - They attack large trees, 71.
Tie Variegated Cut-worm
The full-grown larva, 72 - The eggs, 72 - Habits of the larva, 72 - Cut-$i 2$worm moths deposit their eggs on the leaves and not on the ground,73 - The imago, 73-Deseription of the insect as larra, pmpa, andimago, 74.
Cut-worms-Continued.
Page.
The Dark-sided Cut-worm74General characters of the larva, 74 - Habits of, and injury done by it, 75- Description of the imago, 75 ; of the larva and chrysalis, 76.
The Climbing Cut-worm 76
Iujury done by the larva, 77 -General characters of the larva, 77 ; of the moth, 78 - Description of the larra, 78; of the imago, 78.
The W-marked Cut-worm $7!$
General characters of the larva, 79 - Plants it attacks, 79 - Characters of the moth, 79 -Description of the larva and chrysalis, 79 .
The Greasy Cut-worm 80
The larva very variable in coloration, 80 - Its injury to tomato and to- bacco plants, 80 - General characters of the moth, 80 - Description of larva, chrysalis, and imago, 81.
The Western Striped Cut-worm 81
Resemblance of its larva to that of the Corn Rustic, 81 - General cliarac- ters of the worm and moth, 82 - Description of the larva, 82 .
The Dingy Cut-worm $\$ 2$
Difference between it and the foregoing species, 82 - General characters of pupa and imago, 82-At least three species of our Cut Worms are difficult to distinguish, 83 - Description of larva, chrysalis, and imago, 83.
The Glassy Cut-worm $8: 2$
Habits and general characteristics of the larra, 83 - Characteristics of the moth, 84 - Description of larra and chrysalis, 84 .
The Speckled Cut-worm 84
Characteristics and habits of the insect, 84 - Description of larva, clirys- alis, and imago, 85.
The Small White Bristly Cut-worm 86
Habits of the worm, 86 - Characteristics of the moth, 86 - Description of larva, chrysalis, and imago, 86.
Other Cut-worms 87
Fitch's account of the Corn Cut-worm and the Yellow-beaded Cut-worm, 87.
The Wheat Cut-worm -7
Injury caused by it, 87 - Description of the larva, 88.
Remedies aganst Cut-worms 89
Natural enemies, 89; Microgaster militaris, z9; Paniscus geminatus, 89; The Spined Soldier-bug, 89; The Cut-worm Lion, 89 - Other enemies, 90 -Artificial remedies for climbing cut-worms, 90 ; for common field cut-worms, 91 .
Insects infesting the Potato 91General remarks, 91 - Number of species affecting the Potato, 92.
The Stalk-borer 92Habits of the larva aud inago, $92-$ Remedy, 93.The Potato Stalk-weevil93
Its geographical distribution, 93- Its habits, 93-Remedy, 95.
The Potato- or Tomato-wory95It caunot sting with its horn, 95 -Its chrysalis, 95 - How the imago dif-fers from the Tobacco-worm Moth, 95 -Remedies and parasites, 96.
Blister-beetles97The Striped Blister-beetle, 96 - The Ash-gray Blister-beetle, 97 - TheBlack-rat Blister-beetle, 98 -The Black Blister-beetle, 98 -- The Mar-gined Blister-beetle, 98-- Synonymical remarks, 98 -Remedies for Blis-ter-beetles, 99.
Insects infesting the Potato-Continued.
Page.
The Three-lined Leaf-beetle
Merdigerous habit of the larva, 99 - It hav two annual brools, 100 - Other notes on the habits of the insect, 100 .
Tife Cucumber Flea-beftle 101
The Colorado Potato-beetle 101Its past listory and future progress, 101 - Its native home, 101 - Itsgradual spread eastward, 102 - Its confusion with the Bogus ColoradoPotato-beetle, 103-How the two speeies differ in habits, 104; in theirlarval states, 104 ; in the egg-state, 105 -Description of the larva ofDoryphora juncta, 106-Differences in the imagos of the two species, 106-Hahits of the Colorato Potato-lveetle, 10í - When it appears and dis-appears, 107 - Number of eggs laid by each female, 107 - Food-plants,107 -Singular fact that D. juncta has not acquired the habit of attack-ing the Potato, 108 - Natural remedies, 109 -Complieated economy ofnature, 109 - Decrease in the number of Potato-beetles on account ofincrease in the number of parasites, 103 - The Colorado Potato-beetleparasite, 111 - Its general character and halsits, 111 - Description ofLydella doryphorce, 111 - Ladyliirds and their larrax, 112 - The SpinedSoldicr-bug, 113 - The Common Squash-bug erroneously considered anenemy of the Potato-bectle, 113 - The Bordered Soldier-bug, 114 - TheMany Banded Robber, 114 - The Rapacious Soldier-bug, 114 - TheVirginia Tiger-heetle, 115-The Fiery Ground-ibectle, 115 - Blister-beetles, 115 - The larver not touched by fowl, 115 - Artificial remedies,116 - Ineffectiveness of mixtures tricd, 116 - Killing the bectle early inspring, 116 - Pincers for crushing the insect, 116 - Benson's machine,116 - Proper choice of varieties of potatoes, 117 - The pest will over-run the Eastern States, 117 - Carelessness in transmitting specimens ofthe beetlc, 117 .
The Apple-root Plant-louse 118Three distinct kinls of rots affecting the roots of Apple-trees, 118 - TheRoot-louse the cause of one of thicse rots, 118 - The cause of the otherrots still hidden, 119 - The Root-louse especially injurious in southerlylatitudes, 119 - It occurs also on other parts of the tree besides the root,120 - Description of the winged louse, 120 -Fitch's description of thewinged form refers to another species, 120 - The Root-louse belongsto the genus Eriosoma, 121-Natural enemies, 121; Chalcis-fly, 121;The Root-lonse Syphus-lly, 121: Scymmus cerricalis, 122-Artificialremedies, 123.
The Wooly Elm-tree Louse 123
Its general appearance and habits, 123 - Description of the winged form, 124,
Insects Injurious to the Grape-vine 124
The New Grape-root Borer 124Reports on the damage eaused by it, 124 -Description of the larra, 126 -It belongs probably to the Cylindrical Orthosoma, 126 - Former ac-counts of the natural history of this beetle, 127 - Its injury known forseveral years, 127 - Remedies, 12s.
The Grape Curcullo 128Nature of the damage done by it, 123 - Its larva, 128 - The perfect beetle,129 - No injure done bs it in $1868,129$.
The Grape-seed Curculio 129General appearance of the maggot, 129 - Mr. Saunders' aceount of thedamage done by it, 130 .
Insects Injurious to the Grape-vine-Continned.
The Grape-cane Gadl-curedlio. 131
The Gall caused ly it, 131 - The larva, 131 - Its transformation, 131 - De- scription of the beetle, $13:$ - Differences hetween it and a closely allied species, 132 - The Gall caused by the punctures of the female beetle, 132-Remedy, 132.
The Grape-vine Fidia $13 \cdot$
It is rery injurions in Missonri, $13 \cdot$ - Habits of the beetle, $13 ?$ - Reme- dies, 133.
The. Grape Frcit-wora $13: 3$
Amount and extent of the injury canserl by it, 133 - Characteristics of the larva, 134 - Transformations, 134 - Description of larva, chrysalis and imago, 135 - Remedies, 135.
Tire Eight-spotted Forester 136
Characteristics of the larva, 136 - It is not numerous enough to canse serions injury, 135 - Other caterpillars resembling it, 136 .
Tife Grape-vine Plume 137
Work of the larva, 137 - Its habits and characteristics, 137 - The motl, 137 - Remedy, 133.
The Snowy Tree-cricket 133
Characteristics of the insects, $13-$ - It is injurious, 133 - Nature of the injury caused by it, 138 - Remeds, 139.
The Raspberry Geometer 139
Habits of the larva, 139 - Parasite attacking it, 139 - Characteristics of the moth, 139 - Description of the larra, 139 ; of the imago, 140.
The Gooseberry Fruit-worm 140
Accomnts of the injury caused by it, 140 - Habits of the worm, 140 - The moth, 141 - Remedies, 141 - Description of larva, chrysalis, and imago, 141.
The Strawberry Leaf-roller $14:$
Extent and nature of the damage cansed by it, 142 - Habits of the insect, 142 - Accounts of its injury in Indiama and Illinois, 142 - Remedy, 143 - Description of the imago and larva, 143.
The White-marked Tussock-moth 144
The egg-mass, 144 - The larva and larval changes, 144 - The full-grown larva, 145 - Habits of the larva, 14. - Mode of casting off the larval skin, 145 - The cocoon, 146 - The inngo, 146 - Two amnal broods, 146-Food-plants, 146 -Remedies, 147.
The Bas-worm, alias Basket-worm, alias Drop-worm 147
Its geographical distribution, 148 - Injury caused by it, 143 - The egg, 148 - The larva and its growth, 148-Habits of the larva, 149 - The chrysalis, 149 - The sex distinguishable in the chrysalis state, 149 - The imago, 149 - Food-plants, 150 - Parasites, 150 ; Cryptus inquisitor, 150 ; Hemiteles thyridopterygis, n. sp., 150 - Remedies, 151.
The Ailanthus-worm 151
Injury done to the Ailanthus tree, 151 - Habits of the larra, 151 - The chrysalis, 151 - The imago, 152 - Geographical distribution, 152 - Remedy, 152 - Description of larva and chrysalis, 152 ; of the imago, 153.
The Walnut Tortrix 153
Habits of the larva, 153 - General appearance of the moth, 15:3-Phy- tophagic form of the insect on Snowberry, 153- Description of larva, chrysalis, and imago, 154 ; of the variety symphoricarpi, 154.
Page.
The Seed-corn Maggot 154
Accounts of damage caused by it, 154 - The maggot, 155 - Transforma- tion 155 - Description of the imago, 155 - Remedy, 155 - Habits of Anthomyia larvie, 156.
The White Grub 156
Account of the damage cansed by it, 156 - Injury done by the perfect in- sect, 157 - Résumé of its life-history, 157 - Remedies, 157 - Regularity in the appearance of the beetle, 158 -Accounts of the fungus infesting the White Grub, 158.
The American Meromyza 159
Nature of the damage cansed by it, 159 - Characteristics of larva, chrys- alis and imago, 160 - European Diptera with similar habits, 160 - Remedies, 161.
The Sheep Bot-fly or Head-maggot 161
The insect in its different states, 161 - Its larva, 162 - Pupa, 162 - Char- acteristics of the imago, 162 - Fatal results of the presence of the mag- got in the head of the sheep, 163 - Rabbits attacked by gad-lly, 164- Testimony regarding the viviparons habits of the Bot-fy, 164 - Reme- dies, 165.
Insect enemies of the Honey-bee 166
The Bee-moth or Wax-worm 166Gencral appearance of the moth, 166 - There are no moth-proof beehives, 166 - Halits of the worm, 167 - How its presence in the hive maybe recognized, 167 - Prevention and remeds, 167.
The Bee-killer 168
It is an Asilid fly, 168-Mr. Thompson's accomnt of the H5, 168 - How it captures and kills becs, 168 - No remedy known, 168.
BENEFICIAL INSECTS.
The Rear-horse, alias Camel-cricket, alias Devil's Riding-horse 169
Its food, 169 - How it grasps its prey, 169 - Difference in the sexes, 170 - The larva, 170 - The egg-mass, 170 - The mode of egg-laying, 170 - Voracions disposition of the Mantis, 171- Its beneficial influence, 171 - Tachina-parasite of the Mantis, 171.
INNOXIOUS INSECTS.
The Solidago Gall-moth 173
Gall cansed by Trypeta solidaginis, 173 - Gall produced by the Solidago Gall-moth, 173 - Its natural history, 173-Provision of the larva for its protection within the gall, 174 - Previous account of the gall, 174 - Gall cansed by Cochylis hilarana on Artemisia campestris, 175-Dcscription of the Solidago Gall-moth as larva, chrysalis, and imago, 175-Para- sites attacking it, 175; the Inflating Chalcis, 176; Eurytoma bolteri, n. sp., 176; Hemiteles (?) cressonii, ${ }^{\circ}$ n. sp., 177 ; Microgaster gelechio n. sp., 177 ; other parasites, 178 - Oberea larvic intruding the gall, 178.
The Knotweed Geometer 179Its natural history, 179 - Description of larva and chrysalis, 179.
The Thistle Plume 180
Work of its larra on thistle-heads, 180 -Description of the larva, chrys- alis, and imago, 180.

REPORTII.
[Submitted December 2, 1869; published March, 1870.]
Preface

Report of the Committee on Entomolosy of the State Horticultural Society
Noxious insects less injurious in Missouri in 1869 than usual, 5 - The Army Worm and the Grain Plant-louse considerably injurious in Missouri in 1869, 5 - The Chinch Bug and the Codling Moth less injurions, 6 - A species of Thrips destroying great numbers of the Curculio, $6-$ Eggs of the Apple-tree Plant-louse destroyed by insect foes and birds, 6 - According to Dr. Hull the "scab" in apples is caused by the Apple-tree Plant-lonse, 7 -The Pickle Worm doing great damage during 1869, 7 Importance of preventing the introduction of injurious insects, 7 - Cultivation canses inscets to multiply unduly, 8 - More attention paid in Europe to injurious insects than in this country, 8.
Imported Insects and Native American Insects
The imported Currant-worm much more injurious than the native, 8 Other instances showing the greater destructiveness of imported insect enemies than of their native representatives. 9 - Almost all our worst insect pests and pernicious weeds have been introduced from Europe, 10 - Few American insects and plants have become naturalized in Europe, 11 - The American fauna and flora not so highly improved and developed as in Europe, 12 - Australian fauna still more "old-fashioned" than America, 12 - The parasites of injurious insects are not imported with the insects themselves, 13 - Government aid should be solicited to exterminate recently imported injurious insects, 13 - But little attention given so far by our Covernment to assist the study of economic Entomology, 14-Danger of introducing the Oyster-shell Bark-louse into Missouri, 15 -Immunity of the Pacific States from anans of our fruit insects, 15 .

The Chinch Bug

It is the most injurious of all insects infesting grain, 16 - Its past history, 17 ; it was known in South Carolina in Revolutionary times, 17 ; it was injurions in Missouri as early as 1854, 17; noticed in Illinois in 1840, 17 ; it was very injurious in Missouri in 1868, 17; but hardly noticed in 1869, 17 - Probable reason why it was not noticed in Missouri in former times, 18 - Whỵ it is not injurions in Massachusetts and New York, 18 - Its natural histors, 18 - The pupa state in the different insect Orders, 18 - Time required far different insects to complete the cycle of development, 19 - The Chinch Bug is two-brooded in Missouri, 19 - Its winter quarters, 20 - Its rapid multiplication, $20-$ Dr. Shimer's acconnt of its nuptial tlights, 21-It deposits the eggs underground on the roots of the plant, 21 - The egg, 22-Dimorphous forms of the Chinch Bug, 22 - Its destructive powers, 22 - Account of its appearance in immense numbers, 23-Heading off the marching Bugs by a barrier of pine boards, 23-Heary rains ilestructive to the Chinch Bug, 24-Moisture injurious to the egg, 24 - The Chinch Bug is always worse in a dry season than in a wet one, 24-Dr. Shimer's theory on epidemic disease affecting the Chinch Bug, 25-Cannibal foes of the Chinch Bug, 25; several species of Ladybirds, 25; the Weeping Laccwing, 26; How the
The Chinch Bug-Continued.Lacewing larva seizes its prey, 26; The Insidions Flower-bug. 2z ; theCommon Quail, 2マ—Amount of damage done hy the Chinch-bug, 28-Remedies, 28 - Burning in winter the old corn-stalks and other deadstuff on and near the fields, 29 - Mixing winter rye among spring wheat,29 - Intercepting the marching Bugs loy fence-boards, 89 - Sowinggas-lime, 30 - Other remerlies, 30 - Bogus Chinch Bugs, 31 - Severalspecies of Heteroptera confounded with the truc Chineh Bug, 31-The smell emitted loy the Half-winged Bugs, 32 - The Insidious Flower-bug, 32 - The Ash-gray Leaf-bug and its injury to grape-vines, 33 -The Flea-like Negro-bug. 33 ; injury caused by it to raspberry, straw-berry, and garden flowers, 34 - Two other species of Negro-bug, 35 -Recapitulation of the natural history of the Chinch Bug, 36 .
The Army Worm37
Four distinct caterpillars designated as Army Worms in this country, 37.Tie Tent-caterpillali of the Forest37
It cannot properly be called an Army Worm, 37.
Tife Cotton Worin37Historical data on the injury caused by it, 33 - The egg, 33 - The wormand its habits, 39 - Mr. Lyman's ineorrect account of its development,39 - The moth and its habits, 40 - Its hibernation, 40 - Remerlies, 41.
The Solthern Grass-worm41
It resembles in habits the veritable Army Worm, 41.
Tife True Army Worm41Its past history, 41 - Rev. Powers' aecomt of its invasion in the NewEngland States in 1770, $4 \cdot$ - Aecounts of later invasions previons to1261, 43 - Years of its appearanee in Illiuois, 43 - The invasion of theyear 1861,44 - Its appearance in Missouri in 1869,44 - Its sudden ap-pearance and disappearance, 45 -Reason for the apparently suddenappearance, 45 - Army Wrom sears are wet with the preceding yeardre, 45 - Reason for the increase and decrease of the number of worms,46 - Its natural history, 47 - Previons accounts of its natural history,47 - When the eggs are laid, 47 - Where they are laid, 42 - Misaireetedinstinct in inseets and birds, $43-$ Exceptions to the normal halsit of theWorm, 48 -Color of the Worm, 49 - The chrysalis and imago, 49 -Parasites, 50 ; The Red-tailed Taehina-Hy, 50 ; Its beneficial work, 50 ;It infests also other insects, 50 ; Walsh's description of the $\mathrm{H} 5,51$; Ithas been re-described as Ecorista OstenSackenii, 51; The Yellow-tailedTachina-lle, 51 ; Description of the fly, 51 ; The Glassy Mesochorus,52 ; The Diminished Pezomachus, 52; The Military Microgaster, 52;The Purged Ophion, 53: The Army-Worm Ichnemmon-fly, 53- Habitsof the Army Worm and suggestions for its destruction, 53-Burninggrass meadows in winter or early spring, 54 - Plowing late in the fall,54 - The marching of the Worms, 54 - Plants they prefer, 54 - Thesbecome beneficial by devouring the chess in the fields, 55 - Ditching,55 - Deseription of the inseet as larva and imago, 56 .
Insects infesting the Sweet-potato 56
Tortoise-beetles 57The Clubbed Tortoise-beetle affeets the Irish Potato, 56 - Its gencral ap-pearanee, 57 -Charaeteristies of Tortoise-beetles, 57 - Merdigeroushabits of Tortoise-beetles and others of the same family, $53-$ Generalappearance of the larvie, $58-$ Their dung parasol, 59 - Larval molts,59 - Egg of Tortoise-heetles, 60-The chrysalis, $60-$ Habits of andinjury done by the beetles, $60-$ Remedies, 61 .
Insects infesting the Sweet-potato-Continucd.
The Two-striped Sweet-potato Beetle
Pago.
It seems to be confined to that plant, 61 - The larva and the use of its fork, 61 - Its pupa and imago, 61.
The Golden Tortoise-beetle 62
Food-plants and characteristics of the larva, 62 -Brilliant color of the beetle, 62 .
The Pale-thighed Tortorse-beetle 62
It is hardly distinguished from the foregoing species, 62.
Tife Mottled Tortoise-beetle 63
Characteristics of the beetle, 63 - of the larva, 63 .
The Black-legged Tortoise-beetle 63
Characteristics of imago and larva, 63.
The Pickle Worm 64
Other insects infesting cucurbitaceous vines 64
The Squash Borer, $6 \mathfrak{2}$ - It seems to be confined to the Eastern States, 64 - The Striped Cucumber-beetle, 64 - Injury done by the beetle, 64 ; by the larra, 65 - The larva and pupa, 65 - Number of annual generations, 65 - Remedies, 66 - Extent of the injury caused by it, 66 - The 12- Spotted Diabrotica, 66 .
The Pickle Worm 67
Characteristics and description of the worm, 67 -Its habits, 67 - Charac- teristics of the moth, 68-Accounts of injury done by the worm in Mis- souri and Illinois, 69 ; in other portions of the country, 70 - It was not known before as injurious, 70 - Remedy, 70 ,
Insects injurious to the Grape-vine 71
The Hog Caterpillar of the Vine. 71The egg, 71 - Characteristics of the larva, 71 - Its habits when about totransform, 72 - The chrysalis and imago, 72 - It is one-brooded Northand two-brooded further South, 72 - It is very injurious, 73 - The Mi-crogaster parasite and its development, 73 - Habits of caterpillar in-fested with the parasite, 73.
The Achemon Sphinx74Appearance and habits of the larva, 74 - The chrysalis, 75 - The insectis single-brooded, 75 - The moth and its issuing from the pupa shell,75 - No parasites known, 76.
The Satellite Sphinx76How to distinguish its larva from that of the foregoing species, $76-$ De-velopment of the larva, 76 - Variations in color of the larva, 77 - Itsposition whell at rest, 77 - The moth, 78.
Tile Abbot Spilnx78Its distribution, 78 -The larva varies much in color, 78 - The chrysalisand imago, 79.
The Blue Caterpillars of the Vine79The Eight-spotted Forester, 80 - Larva previously mistaken for it, 80 -habits and characteristics of the larva, $80-$ Harris's description of thelarva, 81 - The moth, 81 - Mr. Andrews' account of its ravages, 81 -Remedies, 82.
The Beautiful Wood Nymph, 83-Characteristics of the moth, $83-$ Close resemblance between the larva of this and the foregoing species, $83-$ The differences pointed out, 83 - Development of the insect, 83.
The Pearl Wood Nymph, 83-It greatly resembles the Beautiful Wood Nymph, 83 -Its probable larva, 84 - Practical importance of distinguishing these closely allied species, 84 .
Insects injurious to the Grape-vine-Continued.
Page.The American Procris
Work of its larva, 85-Description of full-grown larva, 86 - The moth,86 - It is not very destructive, 86 - Two annual broods of the insects,86 - Parasite of the American Procris, 87.
The New Grape-root Borer
Correction of opinion formerly expressed, 87.The Broad-necked Prionus, 87 -Duration of the larva state, 87-Itstransformation, 88-It bores also in Apple roots, 88 - Great damagedone by the borcr, 83 - No good remedy known, 88.
The Tile-horned Prionus, 89 - How it differs from the foregoing, 89 - Itsoccurrence on prairie land, 90 - Small dimorphous male form, 90 - Thelarva subsists also upon the roots of herbaceous plants, 90 - Practicalcousiderations, 91.
The Grape-seed Maggot 92
The Grape-seed Curculio larva of the first report is that of a Hymenopte- rous insect, 92 - The perfect insect is closely allied to the Joint-worm Fly, 92 - Mr. Saunders' account and description of the imago, 93.
The Canker WormThe egge, 94 - The larva and larval changes, 95 - Importance for the or-chardists to recognize the true Canker Worm, 95-The Imported Elmleaf-beetle mistaken for it, 95 -Description of the larva, 96 - Its food-plants, 96 - The chrysalis. 96 - Only one annual brood in the latitudeof Saint Louis, 97 - The moth and its varieties, 97 - It is less injnrionsin Missouri than in the Eastern States, 97 - Remedies, 98 - Classifica-tion of remedies proposed, 98 - The trongh and bandage systems, 99 -Muriate of lime as remedy, 100 - Jarring the tree, 101 - Late fall plow-ing, 101 - Summer plowing, 102-Efficiency of hogs, 102 - Enemies,102; Birds, mite and parasites, 102; Ground-bcetles, 103; The FraternalPotter-wasp, 103.
Cabbage Worms 104
The Southern Cabbage Butterfly 104Its geographical range, 104 - Injury cansed by it in Missouri, 104 - De-scription of the larra, 105 - The chrysalis and imago, $105-$ Habits andother food-plants, 105.
The Potherb Butterfly, 105 - It is a Northcruspecies, 105 - It will very likely never occur in Missouri, 106 - Geographical range of insects principally influenced by temperature, 106 - Iscntomic lines, 106 - Southern insects found near Saint Louis, 106.
The Imported Cabbage Bntterfly, 106-Amount of damage cansed by it in Canada, 107 - Its spread westward, 107 - It will undoubtedly spread to St. Lonis, 107 - The insect in Europe, 107 - History of its introdnction, 107 - The insect in its different stages, 103 - Its food, 108 - Remedies, 109 - Parasitcs, 109.
The Cabbage Plusia110Characteristics and habits of the larva, 110 - Its transformations, 111 -Remedies, 111 - Description of larva, chrysalis and imago, 111 - A simi-lar worm ocenrring on thistles, 112.8794
\qquad

\footnotetext{
\qquad

[^1]
.
The Zebra CaterpillarHabits and characteristics of the larva, 112 - The chrysalis and the moth,113 - Two annnal broods, 113 - Food-plants, 113.
The Tarnished Plant-bug 113
Injury caused by it to various trees and plants, 114 - It is a very varia- ble species, 114 - Its development, 111 - No effective remedy known, 115 - Preventive measures, 115.112
Page.
The Philenor Swallow-tail 116
Its food-plant, 116 - Damage done by it, 116 - Characteristics and derel- opment of the larva, 116 - Description of the larva, 117 -The pupa, 117 - The imago, 117 - Prevention, 118.
The Cottonwood Dagger 119
General appearance of the larva, 119 - Two anuual broods, 119 - Chrys- alis and moth, 119 -Larve of other species belonging to the genus Acronycta, 119 - Parasites, 120 - Description of larva and imago, 120 - Characters and habits of other species of the same genus, 121.
The Missouri Bee-killer 121
The true scientifi name of the Nebraska Bee-killer, 121 - Wing-vcins of the genera Asilus, Promachus and Erax, 122-Description of the Mis- souri Bee-killer, 122 - How to destroy the flies, 123-Habits and life- history of Asilus-flics, 123 - Description of larva and pupa of Erax Bastardi (?), 121 - Synonymical notes on the imago, 124.
INNOXIOUS INSECTS.
The Goat-weed Butterfly 125
Its geographical distribition and position in classification, 125- Its food- plant, 125-Habits of the larva, 126 - Larval changes, 126 - Conform- ity in the color of the larva with that of the leaves, 127 - Description of the full-grown larva, 127 -Transformation of the larva to chrysalis, 127 - The two sexes of the imago, 127 - Hibernation, 128.
The Black Breeze-fly 128
Breeze-flies beneficial in the larva state, 128 -Tormenting power of Breeze-flies, 128-Their mode of flight, 129 - Our knowledge of their larval character and habits, 129 - General characters of the larva of the Black Breezc-fly, 129 - It is semi-aquatic, 129 - Walsh's description of the larva, 130 - Habits and food of the larva, 130 - Its transforma- tions, 131 - Discription of the pupa, 131 - Probable habits of Breeze- fly larvie on the Western prairies, 132.
Galls made by Moths 132
The False Indigo Gall-moth 132
The gall and its structure, 132 -General appearance of the larva and the moth, 133 - Description of larva and imago, 133.
The Mis-named Gall-moth134Is it a true gall-maker or an inquiline ?, 134 - Walsh's description of thelarva, 134 - Description of the imago, 134-Generic characters, 134 -Reasons why the insect is an intruder and not a gall-maker, 134-Enumeration of the known gall-making moths, 135 - How the gall isformed, 135.
REPORTIII.
[Submitted December 2, 1870; published April, 1871.]
Preface3
NOXIOUS INSECTS.
Snout-beetles5The whole vegetable kingdom and every part of each plant serve as foodfor insects, 5 -Enumeration of insects affecting the different parts ofthe Apple-trec, 5-Other food-habits of insects, 7 - Vast extent of thescience of entomology, 8 - Beauty and simplicity of classification in en-tomology, 8-Each family distinguished by its general appearance, 8- Unity of habits in each family, 9-Distinguishing claracters ofSnont-beetles, 9 -Their larve, 10 - They are among the most injuriousbeetles, 10 - Injurious Snout-beetles in Europe, 11.
Snout-beetles-Continued.The Common Plem Curcclio.
Page.It is single-brooded, 11 -Experiments to prove this fact, 12 - It hiber-nates as bectle, 13 - Form of the egg, 13 - Feeding habits of the beetle,13 - Creaking noise produced by it, 14 -Stridulation in other insects, 14- It is nocturnal rather than diurnal, $14-$ Habits of the beetle at night,14 - Remedies, 15 - The Ransom Chip-trap process, 15 ; explanation ofthe process, 15 ; it is not so successful as anticipated, 15 ; it is not a newdiscovery, 16 ; number of Curculios caught by it, 16 ; its success depend-ent on the character of the soil, 17 ; directions for using the process, 17;more experiments needed, 17 - Offering premiums for collecting speci-mens, 17 - Absurdity of the application of Paris Green for the Curculio,18 - Jarring by machinery, 18 - The Hull Curculio-catcher defective inseveral respects, 18 - The Ward Curculio-catcher, 20 ; how it could beimproved, 20 ; rules for using the machinc, 21 - Curculio-catcher in-vented by Claxton © Stevens, 22 -Hooten's Curculio-catcher, 22 ; itsadvantages and mode of operation, 24-Two true parasites of the PlumCurculio, 24-The Sigalphus Curculio parasite, 24; Fitch's account ofit, 25 ; Walsh's doubt about its being parasitic on the Curculio, 25 ; cx-periments and observations proving that it is a parasite of the Curculio,25 ; its development and frerquent occurrence around St. Louis, 25 ; itattacks also other soft-bodied larvae, 26 ; points in its natural history,26 ; its position in the system, 27 ; description of the imago, larva, pupa,cocoon and of the var. rufus, 27 - The Porizon Curculio parasite, 28 ; howit differs from the foregoing, 23 ; description of the imago, 28 - Import-ance of the work of these parasites of the Curculio, 29 - Artificial prop-agation and distribution of parasites, 29.
The Apple Curculio
How it differs from the Plum Curculio, 30 - Its natural history, 30 - Foodplants, 30 - The pnnctures it drills into the fruit, 31 - The egg, 31-The larva and its habits, 31 - The larva transforms within the fruit, 32 Amount of damage it does, 33 - How its work in the fruit can be distinguished from that of other insects, 33 - It is very injurious in Southern Illinois and parts of Missouri, 33-It is less injurious to apples than the Plum Curculio, 33 - Injury done by it to pears, 33 - The rot in apples principally produced by it and by the Plum Curculio, 34 - Season of its appearance, 34 -Remedies and preventive measures, 34 -Description of larva and pupa, 35 .
Tife Quince Curculio
Its food-plants, 35 - It is very injurious to the quince in the East, 36 - Dr. Trimble's account of the damage done by it, 36 - How the beetle differs from the two preceding Curculios, 36 - Its transformations and habits, 37 - Its puncture on the fruit, 37 - It hibernates in the larva state, 37 Its larva mistaken hy Dr. Fiteh for that of the Plum Curculio, 38 - The imago state lasts only two months, 38 - It does not attack the Apple, 38 - Remedies, 33 - Description of the larva and pupa, 39.
The Plum-gouger
How it differs from the preceding species, 39 - Injury caused by it, 39 -Food-plants, 40 - It is often mistaken for the Plum Curculio, 40 -Season of its appearance, 40 - Holes bored by it in the fruit, 41 - The larva lives within the kernel of the fruit, 41 - Remedies, 41.
The Strawberry Crow-borer
Distribution of the insect, 42 - Injury done by it, 42 - Iabits and characters of the larva, 43 - Habits of the beetle, 43 - Remedies, 43 - Parasite, 44 - How the larva differs from that of the Grape-vine Colaspis, 44-Description of the imago and larva, 44.
Snout-beetles-Contimed.
The Pea-weevilPage.44Insect enemies of the garden pea, 44 - Characters of the Bruchides, 45 -Habits of other speeies of Bruchide, 45 -Frequent occurrence of its larvain green peaz, 45 - Charaeteristies of the beetle, 46 -It is in all proba-bility an indigenous North Amcrican insect, 46 -The beetle does notsting the peas, 46 - The eggs are fastened by the female beetle on theoutside of the pod, 47-The larra and its habits, 47 - Its transforma-tions, 47 -Remedies and preventives, 48 -Examination of peas in-tended for seed, 48-Concerted aetion necessary to exterminate theinsect, $48-\mathrm{Mr}$. Saunders' aceount of the occurrence of the Pea-weevilin Canada, 49 -Other preventive measures, 49 -Birds destroying theinseet, 50 .
The Grain Breches 50
Its introkuetion from Europe, $50-$ How it differs from the Pea-weevil, 50 - Curtis' aceonnt of its habits in Europe, 51.
Tife American Bean-weevil52Food-plants, $52-$ Its geographical distribution, 52 - Accounts of damagedone by it in New York and Pennsylvania, 52 - It has only lately be-come injurious, 53 - Habits of the larva and beetle, 54 - The propernomenclature of the species, 54 -Deseription of the imago, 55 -Itsdifferences from allied species, 54 - Note on descriptions based upon in-dividual variations, 56 .
The New York Weevil 57
Damage eansed by it to fruit trees, 57 - Former descriptions of the insect, 57 - Its breeding liabits, 57 - The Pear Blight not caused by the beetle, 58.
The Imbricated Sxoct-beetle58
Iujury done by it to vegetation, 58 - Its natural history still unknown, 58 - General appearancc of the beetle, 58 .
The Corn Spilenophort's59Damage eaused by it to corn plants, 59 - Characteristics of the beetle, 59- Its larval history still monknown, 59-Probable habits of the larva,59- Walsh's description of the imago, 59.
The Cocklebur Sphenophorus 60
It is not injurions, 60 - Coloration of the beetle and its probable identity with S. 13-punctatus, 60 - The larva, 60 - Emmmeration of other injn- rious Snout-bectles, 60.
Insects injurous to the Grape-vine 61
Tile Grape Leaf-folder 61
Its geographical distribution, 61 - Generie eharacters, 61 - Characters of the moth, 61 -Sexual differences, 62 -Habits of the larva, 62 -Rem- edy and prevention, 62-Natural enemies, 62-Deseription of the larva, 62.
The Grape-vine Epimenis63Its larva formerly mistaken for that of the Pearl Wood Nymph, 63 - Char-aeters of the moth and sexual differences, 63 - Habits of the larva whenabout to transform, 64 - Its grape-vine feeding habits formerly mn-known, 64 - Description of the larva, 64 ; of the chrysalis, 65.
The Grape-vine Plume65Work of its larra and of that of the Grape-vine Epimenis, 65-Both larverather beneficial when not too numerons, 65 - Characters of the larva,66 - Peeuliar form of the pupa, 65 -Protective mimiery of the pnpa.67 - Habits and appearance of the moth, $67-$ Is it single or double-brooded, 67 .
Insects injurious to the Grape-vine-Continned.The Common Yellow BearPage.How the young larvie differ from the mature larva of the Grape-vine Plume,68 - Food-plants, 68-Color variations in the larva, 69 - The ehrysa-lis, 69 - The imago, 69 - Parasites, 69 - Remedy, 69.
The Sileared Dagger70The larva is polyphagons, $70-$ Characters of larva, pupa, and imago,70 - Remedy, 70 - Parasites, 71 - Description of imago and larva, 71;of the pupa, 72 .
The Pyramidal Grape-vine Worm 72
Distinguishing eharaeters of the Worm, 72 - Its food-plants, 72 - Its trans- formations, $\boldsymbol{7 2}$ - It is single or donble-brooded according to latitude, 73 - Its elosely allied congener in Europe, 73 - Remedies, 73 - Descrip- tion of the larva, 73 ; of pupa and imago, 74 - How it differs from Amphipyra pyramidea, 74 - Deseription of larva and imago of the Spat- tered Copper Underwing, 75.
The Grape-root Borer 75Its distribution, 75 -Distinguishing characters of the larva, 76 -Itstransformation, 76-Charaetcrs of the moth, 76-Deseription of theimago and its sexual differences, 76 - Work of the larva on grape-roots, 77 - Remedies, 77.
The Spotted Pelidnota 37
It is usually not injurions, 77 -The larva and its habits, 78 - The beetle, 78 - Description of the larva, 78.
The Grape-vine Flea-beetle79It is well-known to the grape-grower in Missouri, 79 - Its distribn-tion and food-plants, 80 -Hibernation, 80 - Damage done by the beetlein spring, 80 - The eggs, 80 - Danage eansed by the larvie, 80 ; theirtransformation, 80 -Remedies, 80 -Description of the larya andрира, 81.
The Grape-vine Colaspis81Fiteh's aceount of the inseet, 82 -Varieties of the beetle, 82 -The larvain all probability attacks sometimes that of the Leaf-folder, 82 - It liveson the roots of the Strawberry, 82 - Larva of the European Colaspisbarbara, 82 - Difference in habits of larvie of allied speeies, 83 -Singu-lar charaeters of the larva of the Grape-vine Colaspis, 83 - Work of thelarva on Strawberry roots, 83-Remedy, 84-Description of thelarra, 84.
Tife Grape-leaf Gall-Louse 84Its life-history not yet fully studied, 84 - Previous accounts of the insect byFitch, Shimer, and Walsh, 85 - The root disease in France, 85-ThePhylloxera vastatrix recognized as the eause of this disease, 85 - Identityof the gall-louse with the root-inhabiting inseet, 86 -The American andEuropean insects are identical, 86 - Remedies tried in France, 86-Thedisease direetly eaused by the Phylloxera, 87 - Injury done by the Phyl-loxera in Missomri, 87 - Forming of the gall, 87 - Propagation of theliee and multipiieation of the galls, 88 - The gall-lice descend in thelatter part of the season to the roots, 88 - Change of the insect afterpassing from the leaves to the root, 88-Questions still to be settled inthe life-history of the Phylloxera, 83 -Rare oecurrence of the wingedform, 89 - The inseet ean be transported from one place to another onroots, 89 - It hibernates on the roots, 89 - Grape-vines that should beplanted, 89 - Number of indigenous species of the Grape-vine, $90-$Grape-vines whieh are most seriously infested with the Grape leaf-lonse, 90 - Danger in planting the Clinton among other grapes, 91 -In-
Insects injurious to the Grape-vine-Continued.
The Grape-leaf Gall-louse.
sects aequiring different food-habits as illustrated in the Apple-maggotand the Pine-leaf Seale, 92 -The different forms of the Grape leaf-louse, 93 -Diseussion on the proper place of the inseet in the elassifica-tion, 93 - On Dr. Shimer's proposed new families Dactylospheridar andLepidosaphide, 93-Objections to Fitch's specific name vitifolia, 95-Identity of the European with the American insect, 95 - The Apple-root louse is identical with the Wooly Aphis, 95 - The Gall-inhabitingform of the Phylloxera identical with the root-inhabiting type, 96 -Characters of the genus Phylloxera and its place in the system, 96.
The Colorado Potato-beetle again.Its ouward mareh, 97 - It invades the Doninion of Canada, 97 - How iterossed Lake Michigan, 97-It will probably spread through Ontariounless preventive measures are taken, 98 -Excellent ehance to prëventits spread in Canada, 98 - The Paris green remedy, 99 -It is efficient ifjudiciously applied, 99 - It does not affect the tuber, 99 - Natural checksto the increase of the Potato-beetle 100 - The Great Lebia destroying thelarvæ, 100 - Bogus experiments, 100 - The true Remedy, 101 - How toprevent the inseet from beeoming too numerons, 101 - Planting earlyvarieties of potatoes, 101.
The Codling Moth again 101
Hay-bands around the trunk of the tree more effectual than rags placed in the fork, 102 - The Codling Moth is single-brooded in the more north- ern countries, but double-brooded in the latitude of St. Lonis, 102 - Sex- ual differenees of the moth, 103 -Sexual characters in the genera $A r$ - gymnis and Grapta, 103 - The Codling Moth also infests peaches, 103.
The Corn Worm alias Boll Worm 104
Its geographieal range, 104 - Injury doue by it to eoru, 104 - It attacks tomatoes and other plants, 105-Food-plants of the Stalk-borer, 105- The egg of the Corn Worm, 105 - Mr. Glover's aceount of the habits of the Boll Worm, 106 - The larva is very variable in color, 107 - Its trans- formations, 107 - Number of aunual broods, 107 - Amount of damage done by it, 107 - Remedies, 108 - Attraeting the moth by sweets, 108 - Heard's moth-trap, 109.
The Fall Army Worm 109

Reports of its appearance in 1870, and how it was generally mistaken for
the True Army Worm, 109 - It was also mistaken for the Boll Worm,
111 - Injury caused by it, 111-How it differs from the True Army
Worm, 112 - It is a very variable speeies in the imago state, 113 - The
Spiderwort Owlet-moth, and how it differs from the Fall Army Worm
moth, 113 - Number of annual brools and time of appearance of the
Fall Army Worm, 114 - The eggs and how they are deposited, 114
Preventive measures, 115 - It is never injurious during two consecutive
years, 115 - Parasitic checks, 116 - Description of the imago, 116; of
the varieties and the earlier states, 11%.

[^2]9711
\qquad
Page.
The Tent-caterpillar of the Forest 121The egg-mass and how the eggs are deposited by the female moth, 121-Development of the larva, $12: 2$-Fitch's descriptions of the full-grownlarva, 123 - Confusion arising from want of uniform rule in describinglarve, 123 - The cocoon, 124 - The chrysalis and the moth, 124 - Theweb spun by the caterpillar, 124 - Mr. Ferris's observations on differ-euces in habits, appearance, and food-plants of the catcrpillar, 125-Phytophagic varieties or species, 127 -Food-plants of the caterpillar,127 - Its destructive powers, 127 -Remedies, 128 -Natural enemiesand parasites, 128 -Summary, 129.
The Fall Web-worm 130
It is ofteu mistakeu for the Tcut-caterpillars, 130 - It feeds upon almost every kind of trees and shrubs, 130 - The web spun by the worm 130 - Gencral appearance of the worm, 130 - The chrysalis and imago, 131 - Number of annual broods, 131 - Plants it prefers, 131 - How it differs from the Tent-caterpillar, 1:3 - Remedies, 132-Description of the larva, 132.
The Blue-spangled Peach Worm 132
Winter retreat of the larva, 132 - Gencral appearance of the larva, 133 - Chrysalis and imago, 133 - Callimorpha restalis Packard synonymous with C. fulvicosta, 133 -Food plants, 134-Description of the larva, 134.
The Ash-gray Pinion
Food plants of the larva, 135 -Transformations of the insect, 135 - Char- acters of the moth, 135 -Description of larra and imago, 135 - Rc- marks on allied species, 136.134
BENEFICIAL INSECTS.
The Glassy-winged Soldier-bug 137
It preys upon different species of leaf-hoppers, 137 - Its larva and prpa, 138 - How it seizes its prey, 138 -Coloration of the insect, 138 - [t was never observed before to attack the leaf-hoppers of the Grape-vine, 139 - Habits of the Phytocoritle, 139.
INNOXIOUS INSECTS.
The White-lined Morning Sphinx 140
Rescmblance of the Moth to a Humming bird, 140 - Interest attached to the study of Lepidopterous larve, 140 - Larval variations in the same species, 141 -Food plants of the larva, 141 - The light and dark colored forms of the larva, 142 - Its geographical range, 142-Parasite, 142.
Two of our Common Butterflies. 142
Tine Archippus Butterfly 143Synouymy of its specific name, 143 - Its geographical distribution, 143 -Characters of the Danaide, 143 - Sexual differences, 143 - Food plauts,144 - Hibernation, 144 - Two ammal broods, 144 - Description of theegg, 144 - The larva and its larval changes, 145 - How the horns of thelarva become longer at each moult, 145 - The full grown larva, 146 -Interest attached to the metamorphoses of insects, 146 -How the larvabecomes a ehrysalis, 147 - The hardened chrysalis, 147 - Duration ofthe chrysalis state, 147 - The issuing of the butterfly, 148 - Protcctivecolors of insects, 148 - Nanscous odor of the Archippus Butterfly in allits stages, 149 - The Tachina-parasite of the Archippus larva, 149 - Act-ion of the parasitized larva, 149 - How the Tachina larva and otherinsects prepare the lid of their puparia, 149 - Characters of this Ta-china-fly, 150 -Difficulties of the study of the Tachinarice, 150-Twoforms occurring in Tachina archippivora, 150 - The Butterfly often eon-gregating in immense swarms, 151 - Probable reasons of this assem-bling in swarms, 152.
Two of our Common Butterflies-Continned.
Tie Disippus Butterfly 153Page.Distinguishing characters of the Nymphalides, 153-Food plants and geo-graphical range, 153 - The egg, 153 - Deseription of the egg, 154 -Development of the larva, 154 -Description of the mature and younglarva, 154 - The insect hibernates as young larva, 155-Case preparedby the larva for its winter quarters, 155-Modifications of the case,156 - Peculiar habit of the autummal larva, 156 - Parasites, 157 - Ta-china-fly, 157 - The Disippus egg-parasite, 157 -The Disippus Micro-gaster, 158.
MIMCRY AS ILLUSTRATED BY THESE TWO BUTTERFLIES, WITH SOME REMARKSON THE THEORY OF NATURAL SELECTIONConformity of eolor between animals and their surroundings, 159 - Defi-nition of the term "mimicry," 160-Pungent odor possessed by theDanaider, 160 - Their mode of tlight, 160 - Protection they derive fromtheir peculiar odor, 161 - Pieride and Danaide in the Valley of the Ama-zon, 161 - Mimetic forms of Pieride, 161 - Explanation of the origin ofmimetic forms, 162-Mimicry between the Arehippus and DisippusButtertlies, 163 - The Ursula Buttertly, 163 - Its caterpillar and chry-salis undistinguishable from those of the Disippus, 163 - Its imago hasno protective color, 164 - Mr. Benuett's objections to the theory of Nat-ural Selection producing mimetic forms, 165 - Mr. Scudder's objections,166 - Discussion of Mr. Scudder's arguments, 167 - Mr. Murray's ob-jections to the connection between mimetic resemblances and NaturalSelection, 170 - Natural Selection not the only power producing mim-icry, 171 - Reasons for discussing in this Report the theory of NaturalSelection, 172-Natural Selection involves belief in the doctrine ofEvolution, 173-Darwinism is neither irreligions nor atheistic, 174.
REPORTIV.
[Submitted December 2, 1871 ; published April, 1872.]
Preface3
NOXIOUS INSECTS.
Notes of the Year 5
The Colorado Potato-beetle -
Its injuries in 1871, 5 -Its appearance in great numbers in early spring, 5 -Exorbitant price of Paris green, 6-Natural enemics of the beetle very abundant, 6 - Diminution in numbers of the bectle later in the season, 7 - Causes of such diminution, 7-Damage cansed by the Potatobeetle in Missouri, 7 - It invaded Canada in 1870, 8 - The Three-lined Potato-bectle mistaken for it in New York and Massachnsetts, 8 -Its further spread eastward irresistible, 8 -Slow spread of the inscet in the South, 9 -Its present extent northward, 9 - It spreads but does not leave the districts already invaded, 9 - It is not injurions to potatoes in Colorado at a certain altitude, 10 - New food-plants, 10 - It feeds upon cabbage, 11 - Its hibernation, 11 -Objections raised against the use of Paris green, 11 - Paris green is an efficient remedy and now in general nse, 12 - Box for dusting Paris green, 12-Mixing the poison with diluents, 12 - No serious cases of poisoning have come to knowledge, 13 Autidote for Paris green, 13 - Other applications, 13 - Messrs. Sannders's and Reed's experiments with varions substances, 14 - Experiments with decoctions of various plants, 15 -Air-slacked lime as a remedy, 15 - Mechanical means, 15 - Squire's Brushing machine, 15-Creighton's
Notes of the Year-Continued.
Tife Colorado Potato-beetle.Improved Patent Inseet Destroyer, 15—Disadvantage of all meehaniealmeans, $16-$ A simple and effeetive way of brushing off and killing thebugs, 16 - Natural enemies inereasing, 16 - Chiekens aequiring a tastefor eggs and larvie of the beetle, 16 - Spiders are among its enemies, 17-The 15-Spotted Ladybird and its larva, 18- The Ley Ladybird, 18 -The Ring-banded Soldier-bng, 19 - The Dotted-legged Plant-bug, 19 -The Spined Soldier-loug and its earlier states, 20 - The Nehraska Bee-killer, 21 - The Kansas Bombardier-beetle, 21 -Rove-beetles of thegenera Philonthus and Quedius, 21.
The Codling Moth again22Time of year that the first moths appear, 22 -Time required for devel-opment, 22-Proper time to apply the bandages around the tree, 22-It attacks peaches, 22-Best kind of bandages, 23-Wier's Apple-wormTrap, 23 -Advantages and disadvantages of the trap, 24 - Oreresti-mating the value of Wier's trap, 25-Jarring, $25-\mathrm{Mr}$. Chapin's methodof knoeking down the wormy apples, 26-When this operation shouldbegin, 26 -Fires, lights and bottles of liquid not to be recommendedas a remedy, 27 - Wortllessness of Todd's book "The Apple Culturist,"28 - Natural enemies, 28 - The Pennsylrania Soldier-beetle and itslarva, 28-The Two-lined Soldier-beetle and its larva, 29 -Deseriptionof the larva of Telephorus bilineatus, 30 - Summary, 30 .
The Periodical Cicada. 30
Reproduction, with correetions and additions, of the Chronologieal table of Broods I to VI from Report I, 31 .
Tife Grafe-vine Colaspis again 34Redeseription of the larva from well-preserved speeimens, 34.
The Harlequin Cabbage-bug35It was not known in Missouri prior to 1870, 35 - Its geographieal rangeand color variations, 35 - Inseet enemies of the eabbage plant, 35-Dr. Lyneeemm's aeeount of its labits and injury eaused by it in Texas,36 - lts appearanee in Missouri in 1870,36 - The egg, 37 - The larvaand pupa, 37 - Several annual broods, 37 - The mature bug, 37 - In-jury eaused by it, 37 -Its congener in Europe, 38.
The Rascal Leaf-crumpler 38
Its proper seientific name, 38 - It is hardly notieed in summer time, 38 - Injury caused by it, 39 - It hibernates as larva, 39 - Habits of the larva, 39 - The larral ease, 39 - Characteristies of the moth, 39 - Food plants, 39 - Remedics, 40 -Natural enemies, 40 -LeBaron's deseription of Tachina phycite, 40 - Limneria fagitiva, 41 - Deseription of imago, lar ra and ehrysalis of the Raseal Leaf-crumpler, 41 -Deseription of the variety nebulella, 42.
The Walnut Case-bearer 42
Other ease-bearers enmmerated, 42 - The case of the Walnut ease-bearer, 42 - Differenees between the moth and that of the Raseal Leaf-crumpler, 43 - Natural enemies, 43 -Deseription of Perilitus indagator, 43.
The Apple-leaf Skeletonizer 44
Its work on the leares of Apple trees, 44 - The worm and the ehrysalis, 44 - Appearanee of the moth, 45 - Mr. Hammond's aceount of the injury eansed by the worm, 45 - The European Acrobasis consociella, 45- Remedies and parasites, 45 - Deseription of imago, larva and pupa, 46.
The Green Apple Leaf-tyer 46
It oceurs almost always in company with the foregoing, 46 - Charaeters and habits of the worm, 46 - The Chrysalis, 47 - Deseription of imago, larva and ehrysalis, 47 .
Page.
The Lesser Apple Leaf-folder 47
Its larva and pupa closely rescmbles those of the forcgoing species, 47Mr. Wier's accoment of its habits, 48 - Remedy, 49.
The Apple-leaf Bucculatrix49It is not very injurions in Missouri, 49 - Account of damage cansed by itin New York, 50 - The worm and its liabits, 50 - Its transformations,50 - Season of the appearance of the moth, $50-$ Remedies, 50 - Hab-its of Bucculatrix thaiella, 51-Description of larva and pupa of theApple-Jeaf Bucculatris, 51.
The Apple-twig Borer 51
Its freqnent ocenrrence in Missonri, 51 - Characters of the beotle, 52 - The holes made by it in the twigs, 52 - The holes are made only for food and protection, 52 - The insect breeds probably in the sap-wood of forest trees, 52 - The larva of Sinoxylon bassillare mistaken for that of the Apple-twig Borer, 52 - Remedy, 53.
Insects injurious to the Grape-vine 53
The Red-shouldered Sinoxylon. 53Characteristics of the insect as imago, larva and prpa, 54-Damage doneby it to grape-vines, fruit trees and Hickory, 54 - Description of thelarva and pupa, 54.
Grape Disease 55
The Grape-leaf Gall-Louse 55Its scientific name, 55 - The law of priority, 55 - European grape-vinesvalucless in the eastern U. S., 55-Deterioration of some of our nativevines, 56 - Climatic reasons for the failure of European vines, 56 -The principal canse of this failure is the Phylloxera, 56-Furtherproof of the identity of the American with the European insect, 57 -Reasons for the identity of the Gall-louse with the Root-louse, 57 -Further facts respecting the habits of the Root-louse, 58-Undergroundforms, 58-The young lice and their habits,59-Hiberuation, $59-$The pupa, 59 - The winged female, 59 -Snsceptibility of differentvines to the attacks of the louse, 60 - Classification of the North Amer-icau grape-vincs according to their practical importance, 60 -Synop-sis of the True Grape-vines of the U. S., by Dr. George Engelmann,$60-$ Difticulty of separating the cultivated varieties of grape-vine,61 - Importance of a proper classification of cultivated grape-rines,62 - Importation into Enrope of resisting American vines, 62 - Enum-eration of the cnltivated rarietics and their susceptibility to the dis-ease, 63 - No variety is entircly exempt from the attacks of the root-lonse, 64 - Amcrican vines which resisted the root-louse in Europe,64 - Means of eontagion from one vine to another, 64 - The spread ofthe root-lice from one vine to another, 64 - Transportation of the louseupon the roots of scedlings and cuttings, 64 -Spread of the disease inFrance, 64 - The winged female of the root-lonse and her function,65 - The vernal leaf-gall, 65 - Preference of the winged Plyylloxera forthe Clinton grape and its allies, 65-Power of flight of Phylloxera ca-.ryafolice, 66 - Deposition of the eggs upon the leaf, 66-Probable rea-sons why the injuries of the Plylloxera are greater in Europe than inAmerica, 66-Outward and more visible effects of the root-discase,67 - Practical suggestions, 67 - No need to destroy the Clinton rines,67 - Influence of soil on the intensity of the disease, 67 - Remedies,68 - Destruction of the gall-lice, 68-Destruction of the root-lice, 68 -Results of experiments in France with various substances, 68-Irriga-tion and snbmersion, 69 - Résumé of the insect's history, 69 - No needof unnecessary alarm, 70.

BENEFICIAL INSECTS.

Page.

Silkworms..
Introductory..
The Morus multicaulis fever and its reaction, 72-Increasing attention lately given to silk-culture in America, 72 - North America well adapted to the raising of silk, 73 - General outlines of the natural history of the eight species of Silkworms treated of in this Report, 74.
Tife Mulberry Silkworm
75
Its past history, 75 - Earlicst silk-culture in China and India, 75 - Its introduction into Europe, 76 - Value of silk prodnced in France, 76The "Silk Supply Association" in England and its oljects, 76Countries exporting raw silk, 77 - The name given to silk by different nations, 77 - History of the Mnlberry Silkworm in America, 77 - Its introduction and failure of earlicr efforts, 77 - Renewal of silk-culture within the past decade, 77 - Silk manufacture in the United States, 78-Favorable prospects for raising silk in this country, 78-Silkgrowing in California, $79-\mathrm{Mr}$. Prevost's "California Silk-grower's Manual," 79 -False statements and exaggerations in Prevost's book, 79 - Sale of Californian Silkworm eggs, 80 - Disastrous effect of the Franco-Prussian war on the egg trade, 81 - Success of silk-culture in Califormia dependent on the ability to reel the silk, 81 - Silk-culture in Kansas, 82 -Mons. Boissière's silk establishment and its chances of snecess, 82 - Silk-growing in Missouri, 83 -The fall season in Missouri eminently propitious for rearing silkworms, 84 - Natural history of the Silkworm, 84 - Races of the Silkworm produced by domestication, 84 Effects produced on the insect by domestication, 85-The egg, 86Larva and larral changes, 86 - Cocoon, chrysaiis and moth, 87 - No insect parasite of the silkworm in Europe, 87 - The "Uji" disease in China and Japan, 87 - Diseases of the Silkworm, 88; The Muscardine, its effect and cause, 88; The Pébrine disease, its symptoms and canse, 89; Nature and origin of these diseases, 90 - Other diseases of the Silkworm, 91 - Best varieties or races, 90 - Different forms of cocoons produced by different races, $92-$ How lest to rear silkworms, $92-$ Rearing a very simple process, 92 -Character of climate of the Japanese silk districts, 93 - Keeping the eggs during the winter, 93 - Hatching of the egrss, 93 - Room and building for the rearing of the worms, 93 The feeding net or fillet, 94 -Importance of carrying all the worms simultaneonsly throngh their moults, 94 - Regularity of feeding, 95 Regulating the temperature, 95 - Cocoonery, 96 - Choking the chrysalis, 96 - Egg-laying, 97 - Selecting and fastening the cocoons for breeding purposes, 97 - Treatment of the female mothis after copulation, 97 Preservation of the eggs, 97 - Reeling, 98 - Great skill required to accomplish the work properly, 98 - Classification of raw silk, 98 - Preparing the cocoons for reeling, 98 -Objects of and manipulations in reeling, 99 - Best food for the worms, 100 - Varieties of the Mulberry, 100-Cultivation of the Mulberry, 100 - Osage Orange as silkworm food, 100 - Introduction of the Osage Orange into France, 100 - Experiments in America with freding silkworms on Osage Orange, 101 Advantages and disadvantages of the Osage Orange, 102.
The Cecropia Silkwomin
Changes made in its scientific generic name, 103 - General appearance of the moth, 103 -Fitcl's explanation of the specific name, 104-Food plants, 104 - The cocoon, 104 - Value of its cocoon as compared with that of the Polyphemus moth, 105 -How the moth issues from the co-using the empty cocoon as a storehouse, 107 - The Cecropia worm can-not be classed as an injurious insect, 107 - Samia columbia ought to beconsidered a variety of cecropia, 107 -Parasites, 107 -The Long-tailedOphion, 107 ; its mode of oviposition, 108; habits of its larva, 108 - TheCecropia Tachina-fly, 108; how it affeets its victim, 108; its larvaand imago, 109 -The Mary Chalcis-fly, 109 ; how it escapes from thecocoon of the moth, 109 ; description of the imago, 110 - The CecropiaCryptus, 110 ; its labits, 110 ; description of the two sexes, 111 ; howit differs from the allied specics, 111.
Tue Alinctius Silkworm112Difference between the silkworms of the Castor-bean and Ailanthus, 112 -Introduction of the Ailanthus silkworm into Enrope, 113 - Ailanthicult-ure in Europe, 113 - Its introduction into America, 114 - Disadvantagesof the Ailantlus silk worm, 115-Its acclimatization in America and Aus-tralia, 115 - Value of the cocoon, 115 - Mr. Forgemol's device for un-winding the cocoon, 116 - Natural history of the Ailanthus silkworm,117 - The egg and mode of egg-laying, 117 - Larval changes, 117 -Pupation, 118 - The imago and its variations, 118 - Food plants, 118 -Directions for raising the worms, 119 - A good word for the Ailanthustree, 120.
The Promethea Siliworm 121
Value of the cocoon, 121 - Mode of egg-laying, 121 - Larval changes, 121 -How the cocoon is fastened to the twig, 122-Striking sexual differ- ence in the moth, 192-Callosamia angulifera ought not to be considered as a different species, 122 -Food plants of the worm, 123 -Natural enemies, 123.
The Luna Silkworm 123
The beantiful appearance of the moth, 123-The cocoon, 124-Food- plants, 124 - Larval changes, 124 - Season when the imago issues, 125 - No parasites of the worm known, 125 - dctias selcne probably identi- cal with lena, 125.
The Polyphemus Silkyorm 125
Mode of egg-laying, 125-The egg, 126 - Food-plants, 126 - Larval changes, 126 - The cocoon, 126 - Mr. Trouvelot's account of the issuing of the moth, 127 - Wonderful vitality of the chrysalis, 127 -Characters of the moth and its variations, 128 - The broad antenne of the male moth mistaken for a third pair of wings, 128 - Difficulty of reeling the cocoon, 129 - Number of annual broods, 129 - Parasites, 129.'
The Yama-Maï Silkworm
Its native home and food-plant, 130 - Its introduction into Europe and130Australia, 130 - Attempts at raising it in America, 130-The egg andhow it should be kept over winter, 131 - Climate most favorable for theworm, 131 - The worm and its resemblance to the leaf, 132 - Foodplants, 132 - Larval changes, 132 - The cocoon and the value of its silk,133 - The moth and its habits, 193 - Difficulties of rearing the worm,133 - Mr. Adlams's account of rearing the Yama-maï Worm in Japan, 134The Uji parasite, 136.
Tife Perny Silktworis 137Its native home, $137-\mathrm{How}$ it differs from the preceding, 137 -Larvalchanges, 137 - The cocoon and its silk, 137 - The moth, 137 - 1 ts cul-ture in China, 138-The Tusseh Silkworm, 138.
Silkworms-Contiuned.
Summary
Page.
Successful silk culture possible in this country, 133 - Comparative valne of the different species of silkworms, 138.
INNOXIOUS INSECTS.
The Horned Passalus 139
Its frequeut ocenrrence in old logs, 139 - The noise produced by the beetle, 139- It occurs ouly in decaying wood, 140 - The larva and its excep- tional character, 140 - Description of the larva, 140 - Previons deserip- tions of Passalus-larvae, 141 - Description of the pupa, 141.
The Great Leopard Moth 141
Characters of the larva, 141 - Food-plants, 142 - Hibernation and trans- formations, 142 - The imago, 142-The larva able to resist extreme cold, 143 -Description of the larva, 143.
The Isabella Tiger Moth 14
Characters of the larva, 143 - Food-plants, 143-Cocoon and chrysalis, 143 - The moth, 144-The popnlar name "Fever-worm" in the Sonth, 144 - No parasite known of this and the preceding species, 144.
The Acorn Moth 144
The egg laid in acorns that have becn ruined by Balaminus rectus, $144-$ Habits of the larva, 144 - Characters of larva aud moth, 145 - Descrip- tion of imago, larva and pupa, 145.
REPORT V.
[Submitted December 2, 1872; publishet A pril 18, 1873.]
3
Preface
5
Extomology, its Relations to Agriculture and its Advancement...Definition of Entomology, 5-The term "insect," 5 -The four Subking-doms of the Animal Kingdom, 6-Charaeteristies of insee's, 7-Classi-fication of inscets, 8 - Hymenoptera, 9 - Coleoptera, 10 -Lepidoptera,11-Hemiptera, 12-Diptera, 13-Orthoptera, 14-Neuroptera, 14-Oscnlant and aberrant gronps, 15-Importance of entomology as astudy, 17 - Economic importance of entomology, 18 - Relation of in-sects to Agricnlture, 18-Damage inflicterl by insects to Agricultureand Horticulture, 19 - Progress of economic entomology, 19-Economicentomology in Europe, 19 - Inscets in America much more injurionsthan in Europe, 21 - State entomologists and entomologists in public po-sitions in the United States, 21 - How to counterwork noxious insects,23-Prevention, 24-Checking the spread of injurions insects, 24-Cure, 25-Modification of Dr. Hull's Curculio-catcher, 25 - Encourage-ment of the natural enemies of injurious insects, 26 - Duties of a StateEntomologist, 27 - Annual report, 27 - Correspondence and other du-ties, 28 - How to eollect, preserve and study insects, 29 - Appliancesfor collecting, 29 - Use of the umbrella, 29 - The knapsack, 30 - Thehand-net, 30 - The frame of the net, 30 -The bag of the net, 31 -Useof the sieve, 31 -Sugaring, 32 - Attracting moths by light, $32-$ Howto kill insects, 32 - The cyanide bottle, 32 - Use of chloroform, 33 -Entomotaxy, 34 -Insect pins, 34 - How to pin insects, 34 - How tomount small insects, 34 - Spreading board, 35 - Drying box, 36 - In-sect boxes and cabinet, 37 - Mr. Lintner's boxes for Lepidoptera, 38-Substances for liuing insect boxes, 40 - Preserving iusects in the collec-tion, 41-Relaxing specimens, 41 - Breeding insects, 41 -Breeding-cage, 42 - Note-book of the collector, 43 - How to transmit insects,44-Text-books, 44.

NOXIOUS' INSECTS.

Page.
Notes of the Year 46
The Codling Motir 46
Experiments with Wier's Applc-worm trap, 46 - Valne of different mate-rials for bandages, 47 - Jarring, 48 - Occurrence of the Apple-worm inCalifornia, 49-Enemies and parasites, 44-The Ring-legged Pimpla,49 - The Delicate Long-sting, 50-Other enemies, 51 - Effieiency ofthe Spined Soldier-bng, 51 - False doctrines for exterminating the Cod-ling Moth, 51.
Tree Colorado Potato-beetle 52
Its comparative harmlessness in 1872, 52-New food-plants, 52 - Its pro-gress eastward up to 1872, 52-Experiments with Paris green, 53 - Newenemies, 53 - The Rust-red Social Wasp, 54 - The Rose-breasted Gros-beek, 54.
The Apple-twig Borer 54
It attaeks also pear twigs, 54 - It has heen bred from grape-canes by Dr. Shimer, 54.
Egq of the Horned Passalus 55
The egg, 55-The newly hatched larva, 55 - Rapid development of the inseet, 55.
Egg of the Common May Beetle 55
Description of the eggs and how they are deposited, 55.
EgG of the liroad-necked Phones 56
Charaeteristics of the eggs and where they are deposited, 56.
Eggs of American Tent-caterpillar 56
Correction of the figure given in Report III of the egg-belt, 56.
Counterworking the Tobacco Woms56Mr. White's method of planting the Jamestown Weed among the potatoesand poisoning the blossoms thereof, 56 .
The Grape Phylloxera57Its popular name, 57 - Acconnts of the musual mortality among grape-vines in the spring of $\mathbf{1 8 7 2}, 57$ - Canses of this mortality given in theaceonnts, 59 - Excessive drouth and overbearing, 60 -The Plyylloxerais the trie eanse, 60 -Actnal proof of the Phylloxera having eansedthe mortality among grape-vines, 61 - Inflnences that favored the in-crease of the licc in 1872 , 61 - Importance of a full moderstanding andmanagement of the Phylloxera, 62-Its range in North Ameriea, 62 -Its spread in Europe, 63- Ineonstaney in the habits of the gall-lice,63 - The leaves of Clinton vine no longer affeeted by the gall-liee since1871, 63 - Method of formation of the leat-gall, 64 - Relative immunityof American vines in Europe, 64 - Propagating Ameriean varieties fromcuttings, 65 - Appreeiation of Ameriean vines in Enrope, 66 - Carelessstatement published as to the immunity of Labrusca-vine, 66 - Graftingthe grape-vine, 67 - New theories, 67 - The Phylloxera is the trne canseand not the effect of the disease, 67 - Mr. Laliman's theory that the in-seet has always existed in Europe, 68 - Oidium Tuckeri of Europe andAmerica ideutieal, 69 - Mr. Saunders's aeconnt of the presence of OidiumTuckeri in America, 70 - Means of contagion of the disease from one vineto another, $69-$ Flying eapacity of the winged Phylloxera, 70 - Themale louse, 71 -Remedies, 71 -Effieaey of earbolic aeid and soot,71 - Valne of submersion or irrigation, 72 - Sprinkling with quick-lime,ashes, ete., $72-\mathrm{Mr}$. Lichtenstein's experiments to allure the lice, $72-$Experiments with earbolie acid, 73.
Page.
The Oyster-shell Bark-louse of the Apple 73
Its occurrence in Missouri, 74 - Its appearanee in Luray County, Missonri, 74 - Mr. Hanan's aceount of its spread, 75 - Its oecurrence in Sonthern Missouri, 76 - Its occurrenee in Mississippi and Georgia, 78 - Its ap- pearanee in Kansas, 79 - It is double-brooded in the Sonth, 79 - The waxy seeretion of Homoptera, 80 - The newly hatehed louse, 80 - The larval seale, 81 - Development of the female scale, 81 - Growth of the male scale, 82 - The male louse, 83 - Rare occurrence of the winged male, 84 - Agamie multiplication, 85, - Mode of spreading, 85 - Food- plants, 86 - Varieties of the Apple tree preferred by it, 86 - Enemies and parasites, 87 ; Mites, 87 ; Aphelinus mytilaspidis and Dr. Le Baron's aecount of its habits, 88 - Easy transportation and introduction of the Aphelinus, 90 - Remedies, 90 - Application of oily snbstances, 90 - Bibliographieal and Descriptive, 91 - The generic name, 91 - Signo- ret's classifieation of the Coccida, 92 - Specific name, 92 - Characteris- ties and habits of three allied species, $93-\mathrm{A}$ new name necessar' 5 for our apple-tree speeies, 94 - Description of the eggs and the winged male, 95 ; of the mate and female scale and of the female louse, 96.
The Pine-1eaf Scale-insect 97
Nature of the malady caused by it, 97 - Natural history of the insect, 98 - The male, 99 - There are two annnal broods, 99 - It is confined to the Pines proper, 100 - Natural enemies, 100; The Twice-stabbed Ladybird, 100 ; The Painted Ladybird and deseription of its larra, 101 - Remedies, 101 - Stripping the old leaves, 102 - Application of pow- dered and liquid substances, 102.
The Hickory Bark-borer 103
Accounts of the damage eansed by it in Missouri, 103 - Habits of the Enro- pean Scolytus destructor, 104 - Various kinds of Hiekory attacked by the Hickory Bark-borer, 105 - Its natural history, 105 - Natural enemies, 106-Descriptions of the Three-banded Spathins, 106 - Mr. Cresson's description of Bracon scolytivorus, 106 - Remedies, 107 - Description of the imago, 107 - Is it different from Scolytus 4 -spinosus? 107.
The Rose Chafer 108
Great damage eaused by the beetle in 1872, 108 - Remedy, 109 - Harris's account of its natural history, 109.
The False Chinch-bug 111
It was not known as injurions before 1872,111 - Aceounts of injury done by it, 111 - How it differs from the true Chinch-bug, 112 - Its probable natural histors, 112-Description of imago, larva, and pupa, 113 - Variation in the imago, 113 - Its great abundance in the Fall of 187.2 , 114.
Insects injurious to the Grape-vine 114
Tile Grape-vine Apple-gall. 114The brenst bone of Gall-gnat larve, 114 - The gall mistaken for an apple,114 - Form of the gall, 115 - Habits of the larva, 116.
The Grape-vine Filbert-gali, 116Appearance of the gall, 116 - Larva of the gall-maker, 11%.
The Grape-vine Tomato-gall 117
Its eurions resemblance to a tomato, 11τ - Various shapes assmmed by it, 118 - The larva, 118 - Enemies of the larva, 118.
Tife Grape-leaf Trumpet-gall 118
Characteristics and oceurrence of the gall, 118.
Page.
Eggs in and ou canes and twigs 119
Probable eggs of the Jumping Tree-cricket, 119 - The egg-pmetures on grape-eane, 119 - Charaeters of the egg, 119 -Gencral appearanee of the cricket, 120.

Eggs of the Snowy Tree-crieket, 120.-Trees and shruls attacked by this
ericket, 120 - The egg, 120 - Habits and natural history, 120 - Injury
done by it, 121 - The eggs mistaken by Fiteh for those of the Buffalo
Tree-hopper, 121.

Egg-punctures of the Buffalo Tree-hopper, 122-Development of the
larra, $1 \geqslant 1$-Characters and habits of the perfect insect, 122 -Egg
punctures of some unknown Tree-hopper, 123.

Egg-punctures of the Frosted Lightning-hopper, 122-Development and
habits of the insect, 122.

Egg-punetures prohably of Orehelimum glaberimum, 123-The egg, 123
Characters and habits of the inago, 123.

Eggs of the Oblong-winged Katydid, 123-They have been mistaken by
Harris for those of the Broad-winged Katydid, 123-Ovipositors and
modes of egg-laying in the three Katydids oceurring in Missouri, 124

- Inerease in thickness of Katydid eggs before hatehing, 124.

Tife Buck Motif or Maia Motif

Flight and charaeteristies of the moth, 127 - The egg and mode of egg
lasing, 128 - Appearanee of the full-grown larva, 129 - Larval ehanges,
129 -- Color variations of the larva, 130 - Habits of the young larva,
130 - The sting of the larva, 131 - The pupa, 131 -Issuing of the
moth, 132 -Irregularity and retardation in development, 132 ; the spe
eies benefits thereby, 132 - Food plants, 132 - Natural enemies, 132.

Tie Io Motif
The male and female moth, 133 - The egg, 134 - The larra and its urtieating power, 134 - Larval changes, 135 - Pupation, 135 -Food plants, 136 - Parasites, 136.
The Green-striped Maple-worm... 137
Account of its oceurrence in great numbers in Kansas, 137 -Injury done
by it to Soft maples, 138 - The egr, 138 - Larval changes, 138-The
chrysalis, 139 - The imago, 139 - Natural enemies, 139 - Description
of Belroisia bifasciata, 140 - Remedies, 141.

INNOMIOUS INSECTS.

The Hellgrammite Fly 143
The eggs, 143 - Respiratory apparatus of the larva, 143-Habits of the larva when about to transform, 143 - The pupa, 144 -Sexual difference in the imago, 145.
The Goat-weed Butterfly145The egg, 146 - Habits of the larra, 146 - Larval ehanges, 146 -Trans-formation, 147 - New food-plant, 147 - Simulation of the color of thefood-plant by the larva, 147 -Two annual broods, 143 - Hibernationof the imago, 148 - Natural enemies, 140.
Page.
On a new genus in the Lepidopterous Family Tineidæ with remarks on the fertilization of Yucca 150.
Generic characters of Ironuba, 150 - Description of Pronuba yuccasella, 151 - Plants requiring the aid of insects for fertilization, 152 - Fertili- zation of Orchids, 152 - Fructification of Yucca, 153 - Yuccas must rely on insects for fertilization, 153 - Insects frequenting Y'uceas, 154-Di- urnal and nocturnal habits of Prombba, 154 - How the female moth fertilizes the plant, 154 -Oviposition, 155 - The larva within the young fruit, 155 - Description of the larva, 155 -Only a small percentage of fruit not infested by the larva, 156 - The larva leaves the eapsule and enters the ground for hibernation, 156 - Mntual adaptation of plant and insect, 156 - The moth donbtless occurs wherever Yuccas grow wild, 157 -Easy transportation of the cocoon, 158 - Further facts regarding the fructification of Гucca filamentosa and gloriosa, 158- Yuccas seeding in Europe, 159 - Range of the insect, 159 - Mr. Stain- ton's opinion on the characters of the Yucea moth, 160.
REPORT VI.
[Submitted December 2, 1873; published March, 1874.]
Table of Contents 3
Preface 6
NOXIOUS INSECTS.
Notes of the Year 9
The Codling Moth 9
Failure of the apple crop in 1873,9 - Dr. LeBaron's observations on thehabits of the worm, 9 -Proportion of worms leaving the fruit beforeit falls, 10 -How it affects pears, 10 - Time and method of using ban-dages, 10 - Westward spread of the insect, 10.
The Colorado Potato-beetle 11
How it has affected the price of potatoes, 11 - New food-plants, 11 - Its progress eastward during 1873, 12 - Improved methods of using Paris green, 13 - Device for jarring off the bugs, 14 - European publications on the insect, 15 -Danger of its introduction into Enrope, 15-Pre- cautionary measures to be taken in Europe, 16.
The Cotton Worm
Paris green suggested as remedy, 17 - Address before the National Agri-17cultural Congress, 17 - Mr. Glover's summary on experience with Parisgreen, 19 - Experiments with the poison, 19 -Johnson's Spriuklingmachine, 20 -Patents on Paris green, 20 - The Royall mixture, 21 -Hibernation of the insect, 22 - Natural enemies, 23 -Geographicalrange, 23 - Position of the moth when alighting, 24.
The Canker Worm 24
Dr. Le Baron's summary of remedies, 24-Mr. Milliken's experience with the rope and tin trap, 25 - The Paris green remedy, 26 - A new trougl, 26- Birds which destroy the worm, 27 - Mr. Mann's observations on the in- sect, 28 - Two species have hitherto been confounded, 28 - The English Sparrow and the increase of the White-marked Tussock-moth, 29.
Insects injurious to the Grape-vine30
The Grape Phylloxera 30The term "Phylloxera", 30 - Bihliographical history, 30 - Characters ofthe genus and its position in the system, 33-Biological history, 33-Different forms which the insect assumes, 33-The gall-inhabitingform, 34-The root-inhabiting form, 38-balbiani's discovery of the

Insects injurious to the Grape-vine-Continued.

The Gripe Puylloxer.a.
true sexual individuals and the winter egg of Phylloxera qutrcus, 41 The winter egg not essential to the winter life of the Grape lhylloxera, 42-Polymorphism in Phylloxera, 43-Conclusive proof of the identity of the root- and gall-lice, 44 -Practical considerations, 44 -The more manifest and external effects of the disease, 44 - Morle of spreading, 45 - Swarming of winged specimens of Phylloxere caryafolie, $45-$ Power of tight in the Grape Phylloxera, 45-Spread of the disease through the winged females, 46 - Susceptibility of different vines to the disease, 46 -Practical importance of knowing the more resisting and more susceptible vines, 46 - List of the cultivated species and varieties of vines indicating their relative susceptibility to Phylloxcra, 47 - Prophylactic means of coping with the disease, 43-Grafting the more susceptible onto the roots of resisting vines, 48 -Other preventive measures, 50 - Natural encmies, 50 - Insect enemies of the gall-lonse, 50 - Enemies of the root-louse, 52 - The Phylloxera mite, 52 -Different forms assumed by mites in their development, 52 - Hoplophora aretata, 53 -Peculiarities of the Oribatide, 54 -Direct remedies, 55 -Subuersion a perfect remedy, 55 -Application of pure insecticides without satisfactory results, 56 - Range of the insect in America, 57 - Injury caused by it in America, 58-Reasons why the insect is more injurions in Enrope, 59 - False theories, 60 - The Phylloxera is the cause and not the effect of the disease, 60 - It is a mative American insect and has been imported into Europe, 62-It is peculiar to the Grape-vine, 63 - The American Oak Plylloxera and its natural history, 64 - Conclusion, 65.
Appendix and Notes to the Article on Grape Phyllonera...........
Diagnosis of Phylloxera rastatrix, 66 - Influence of the insect's puncture, 67 - The supposed male of the gall-lonse, 67 - The non-cultivation of the Clinton grape, 67 - Transient nature of the leaf-galls, 68 - Constancy of the differences between the forms assnmed by the iusect, 63 -Supposed sexual iudividnals, 68 - Number of generations anmually produced, $69-$ Number of molts, 69 - Transplanting root-lice on to the leaves, 69 - Nature of the swelling on the roots produced by Phylloxera, 70-The true Grape-vines of the United States, by Dr. G. Engelmann, 70 - Exceptional instances where the European Vine has succeeded in America, 76 - Grafting the more susceptible onto the roots of the resisting varieties, 78 -Descriptions of Tyroglyphus phylloxerce and Hoplophora arctata, 81-Efficacy of inundating the vineyards, 82 -Facts showing that the disease of Grape-vines in America is principally caused by Phylloxera, 82-Description of Phylloxera rileyi, 86-The true sesual individuals and the winter egg, 86 .
The Blue Caterpillars of the Vine...

1. The Grape-vine Epimenis, 87 - Habits and characters of the larva, 87 - Description of larva and clurysalis, 88.
2. The Beautiful Wood Nymph, 88 - Characters and food plants of the larva, 88 - The moth and the egg, 89 - Description of the egg and larva, 89 - Of the chrysalis, 90.
3. The Pearl Wood Nymph, 90 - Its larva almost undistinguishable from that of the foregoing species, 90 -Food-plant, 91—Distingnishing characters of the moth, 91 - Mr. Lintner's description of the larva, $92-\mathrm{Mr}$. Lintner on the difference between the larva of Eudryas grata and E. unio, 93.
4. The Eight-spotted Forester; 94-Description of the larva, 94; Chrysalis and imago, 95.
Insects injurious to the Grape-vine-Continued. Remedies, 06.
Tife Blue Caterpillars of tae Vine-Coatinasl.
Tife Blue Caterpillars of tae Vine-Coatinasl.
Summars, 95-Comparison of the larre of these four species, $95-$
Summars, 95-Comparison of the larre of these four species, $95-$
The Red-legged Ham-bsetle 96
Its popular name, 96 - It has been the eause of an interesting law-suit,96; Entomological information necessary to a just verdiet, 98 - Anotherease before a jury requiring botanical knowledge, 98 - Injury eausedby the beetle in St. Louis, 99 - The eggs, and how they are deposited,99 - The larva and its habits, 99 - The pupa, 99 - Prevention, 100 -Other speeies assoeiated with it, 100 - Habits of other speeies of Cleridde,101-How Mecrobia ruficollis saved the life of Latreille, 101 - Descrip-tion of the larva of Corynetes rufipes, 101 - Description of the pupa, 102.
The Clover-hay WormPage.ts geographical distribution, 102 - It has probably been imported fromEurope, 101 - Its past history and aceounts of damage eaused by it,102 - Its natural history, 105 -Remedies, 105 -Deseription of larvaand ehrysalis, 103; of the imago, 107 -Its allied eongener, Asopiaolinalis, 107.
The Legged Maple Borer 107
The burrows of the larva, 108-Appearanee of the moth, 108-Remarks on the nomenelature of the speeies, 108 - Injury eansed by it to maples, 109 - It attacks only trees already injured by some eause or another, 109 - Remedies, 110 - Deseription of imago, larva and pupa, 110.
The Raspberry Root-borer
Work of Oberea perspicillata in eanes of Raspberry and Blackberry, 111-111Injury caused by the Root-borer, 111 - General appearance and habitsof the worm, 112 - Description of imago and larva, 113.
The Northern Brenthian
Its oceurrenee and distribution, 113 - Charaeteristies of the beetle, 114 -113Fighting habits of the males, 114 - How the male assists the female inovipositing, 115 - How mueh time is required for the transformations ofthe insect, 115 - Habits of the larva, 115-Deseription of the larva,115 ; of the pupa, 116 - Beal position of the Brenthians in the system,116 - The speeifie and generie names, 116 - How another larva hasbeen mistaken for that of the Northern Breuthian, 117-Description ofthis larva, whieh evidently belongs to the Tenebrionide, 118.
The Jumping Sumach-beetle
Sumaeh industry in Europe and Ameriea, 118-Speeies of sumaeh pos-118sessing eeonomie value, 119 - Appearanee and habits of the beetle,119 -The egg-masses, 120 - Development and habits of the larva,120 - Transformation, 120 - The two annual broods, 120 - Injury eausedby it to the sumaehs, 121 - Geographieal range, 121 - Remedies, 121 -Deseription of larva and pupa, 121 - Variations of the beetle, 122.

BENEFICIAL INSECTS.

The Unadorned Tiphia or White Grub Parasite 123
Other enemies of the White Grub, 123 - Coeoon and larva of Tiphia, 123 -It is undoubtedly a parasite of the White Grub, 124 - Charaeters of the genus Tiphia, 124-Habits of Tiphia femorata, 124-Habits of the Tiphia larva, 124-Charaeters of the Unadorned Tiphia, 125-Beetle parasitie upon it, 125 - Deseription of larva and imago, 126 - The species has been deseribed under three different names, 126 .

INNOXIOUS INSECTS.

Page.
The Dominican Case-bearer 127
Characters of the beetle, $1: 7$ - Mode of oviposition, 128 - Oriposition of Chlamys plicata, 128 - The young larva and its food habits, 129 - The case of the larva, 129 - Characters of the larva, 130 -Time refuired for its revelopment, 130 .
The Yucca Moth 131
Its natural history completed, 131 - Deseription of the chrysalis, 131 - Hatching of the chrysalis, 13% - Method of oviposition, 133-Oviposi- tion is followed by pollination, 134 - The egg in the soung fruit and the embryo larva, 134 - It is the only insect that can well fertilize the Yuccas, 135.
Hackberry Butterflies 136
The European Purple Emperor, 136 - Insufficient former account of their earlier states, 136 - Species of Celtis in Missouri, 137.
Tife Eyed Emperor 137
The full-grown larva, 137 - Habits of the larva, 138 -Pupation, 138 - The imago, 139 - The egg and the young Iarva, 139 - Two amual broods, 139 - Hibernation of the young larva, 140 .
Tile Taify Emperor 140
How it differs from the Eyed Emperor, 140-The egg, 141-Larval changes and habits, 141 - Egg parasite, 142.
Bibliographical 142
The generic name, 142 - The specific names of the two species, 143 - Fabricius's original deseription of Lycaon and Herse, 144 - Other species of the genus in the United States, 145 - On the validity of Alicia, 145 - Descriptions of the earlier states of both species, 146 - Their popular names, 148 - The scientific specitic names, 149.
Katydids150General considerations, 150 - Spring in Europe and America, 151 - Stridu•lating noise produced by crickets and grasshoppers, 152 - Sounds inaudi-ble to man, 159 - Grasshoppers, Katydids, Locusts, 153 - Hahits andgeneral appearance of our Katydids, 154 - They oviposit above ground,154, - Their ovipositors not rudimental, 155.
The Angular-winged Katydid
It is the most common species in Missomri, 155-General character of the155insect, 155 - The eggs, 155-Erroneons statement concerning the egg,156 - How the female deposits the eggs, 156 - Number of eggs laid bythe female, 153-Hatching of the larva, 158-Food of the larva, 158-Changing from the pupa to the perfect state, 159 - Its song, 159 - It iscapable of domestication to a certain degree, 160 -Description of theimmature states, 161 -Natural enemies, 162-The Back-rolling Wonder,an egg-parasite, 162 - Curious habit of the femalc Antigaster, 162-Description of Antigaster mirabilis, 163-Striking sexual differences, 163.
The Nabiow-whage Katyod164Distinguishing characters, 164 - Method of oviposition, 165 - The egg,165 - Its song, 166 - Deseription of larva and pupa, 166.
The Broad-winged Katydy 167
It is the true Katydid, 167 - Distinguishing characters, 167 - Mode of oviposition as observed in confinement. 167 - Mr. Jaeger's erroneous statement regarding the oviposition, 168 - Its song, $\mathbf{1} 68$.
The Oblong-wingen Katyuib169It has not get been fomul in Missouri, 169 - Distinguishing characters,169 - The eggs not yet known, 169 - Abnormal femate specimen, 169.
REP0RT VII.
Page.[Submitted at time of publication, April, 1875.]
Preface III
Table of Contents VII
NOXIOUS INSECTS.
The Colorado Potato-beetle
Its gradual spread eastward, 1 - It reaehed the Atlantic during the sear 1874, 1 - Injuries done during the year 1874, 2 -Alarm about it in Europe, 3 -Prohibiting the importation of American potatoes by Emro- pean governments, 3 - The insect probably introdueed into Europe in the perfect form, 3 - It would doubtless thrive in Emrope if im- ported, 4 -Its ravages exaggerated and underrated, 5 - On the safety and advisability of the use of Paris green, z-Past experience with the poison, 10 -Influence of Paris green on the plant and on the soil, 11-Influence of the green on man indirectly through the soil or throngh the plant, 13 -The beetle eats as well as the larra, 14 -It passes the winter as imago, 14 -New food-plants, 14 -New means of destruction, 15 -The Gray Sprinkler, 15 -The proper scientifie uame of the beetle, 16-Mr. Carriere's ridieulous statements, 1%.1
The Chinch Bug19
Its disastrous work in 1874. 19 - Cirenlar distributed among farmers, 19 Appearance and transformations of the Chiuch Bug, 20 - The shortwinged form, 20 - Description of the Chinch Bug and its earlier states, 21 - Its past history in Ameriea, 22-Its past history in Missouri, 22 Destructive powers of the Chinch Bug, 24-Its injuries in 1574, 24 Its injuries in Missouri in 1874, 25-Food-plants, 26 -Time required for the complete development of various insects, 27 - Number of annnal brools, 27 -Its rapid increase, 23 - Where the eggs are laid, 23 Flight of the Chinch Bug, 29-Its migrations on foot, 30 - Hears rains destructive to it, 30 - Direct remedies, 31 - Irrigation, 31 - Preventive measmres, 32 -Burning. 32 - Rolling, 33 - Manuring and early sowing, 34 - Mixing secd, 34 - Preventing the migration of the bugs from one field to another, 35 -Importanee of winter work and eombined action, 36 -Other possible remedies, 37 -Abstaining from the enltivation of grains, 33-Natural enemies, 33: Ladybirds, 39; Lacewing fly and habits of its larva, 40 ; The Insidions Flower-lug and the Many-banded Robber, 41 - Birls destrnctive to the Chinch Bug, 41 Discussion of other proposed remedies and preventive measures, 41 The Chinch Bug injurions to stock, 43 - Prognosticating. 44 - Unnecessary fears, 44 - Bogus Chinch Bugs, 45-The Fulse Chinch Bug, 46 The Insidions Flower-bug and the Ash-gray Leaf-bng, 47 - The Flealike Negro-lug, 43-Recapitulation, 49.
Appendix to the article on the Chinch Búg
List of eorrespondents who replied to the cirenlar, 51 -Questions auswered by correspondents, 52 - Answers given ly correspondents, 53.

The Flat-headed Apple-tree Borer

Extent of its ravages in fruit and shade trees, 71 - Its natural histors, 72 - Natural enemies, 73 - Chalcid larra, 74 -The Cherished Braeon, 75-The Usefnl Labena, 75 -Ants, 76 - Remedies, 76 - Keeping soung trees vigorons and healthy, 77 - Coating the trnnks and larger branches with soap and other greasy snlbstances, 77 - Scraping, 78 - Wrapping wire ganze around the trunk, 79 - Cutting ont the newly-hatched larra, 7.9.
Canker Worms80Confusion regarding the two species of Canker Worms, 80-Distinguish-ing characters of the spring Canker-worm, 80-Description of egg,larva and chrrsalis of Anisopteryx verunta, s2-How the Fall Canker.worm differs from the preceding, $8: 3$ - Description of egg, larra, andchrysalis of Anisopterye pometaria, 84 - Practical importance of distin-guishing the two species, 85 - Comparative deseription of the Spring andFall Canker-worms, 86 - Conclusion, 88 - Extracts from the originalessay on the Canker Worm by W. D. l'eek, so.
Tre Grape Phylloxera90Completion of its natural history, 90 - The trne sexual intividnals dis-covered, 91 - Enitome of the life-history of the Grape Plhylloxera, 91 -Different forms presented by the species, 93 - Its power to change ithalnit. 93 - Specifie identity of the gall- and root-lonse, 94 - Untrust-Worthy experiments made by the Department of Agriculture, 95 -Proof of the identity of the two forms, 95 - The gall-lonse is but atransient form, 96 - Where do the winged females lay their eggs? 96-The winged female lays the egg wherever she is carried by the wind,97 - Particnlar part of the vine chosen ly the winged female for layingher eggs, 98 - The trne sexnal individnals, 93 - Injury done by Phyllox-era in America dnring the year 1574, 99 - Range of the insect in Amer-ica, 101 -Does it occur in Sonth Carolina and Georgia? 102-ThePhylloxera in California, 103-Injury done during the year 1874 inFrance, 103 - Its spread in Europe, 104-Dircet remerlies, 105-Nat-ural enemies, 106 -susceptibility of different varietics of grape-vine,103 - Grafting as a means of connteracting the work of Phylloxera,103 - Undergronnd grafting, 109 - Methods of grafting above ground,112 - Roots to use as stock, 115 - Varicties to graft, 116 -Americangrape-rincs abroad, 116.
Appesdix to the article on Grape Phylloxera117Symopsis of the American specics of the genns Phylloxera, 117 - TheAmerican Oak Phylloxera, 113; Its natural history, 119-Deseriptionof Phylloxera rileyi and the different forms presented by it, 119-Fur-ther points in its life-history, 120.
The Rocky Mountain Locust121Its natural history, 121 - Method of egg-laying, 121 - The egg, 122 -The newly-hatched locust and its development, 122 - Where the eggsare laid by preference, 123 - The invading swarms are formed by a sin-gle species, 124 - Differences between the Rocky Mountain and the Red-legged Locusts, 125-Mr. Thomas's description of the Red-legged Lo-cust, 126 - Variations, 126 - Measurements of Caloptenus femur-rubrum,127 - Description of Caloptemus spretus and of its larva and pupa, 129 -Measurements of Caloptemus spretus, 130 - Summing up the differencebetween the two species, 132 - Chronological history, 132 - Locust in-vasions in the Old World, 132 - Acconnts of earlier locust invasions inAineriea, 133-Chronological history of the Rocky Mountain Locust,134 - Earlier invasions, 135 - Data regarding the invasion of 1867,137 - The invasion of 1873,141 - The invasion of 1874,143 -The in-

- vasion of 1874 in Missouri, 144 - Questions addressed to correspondents in each connty in Missouri regarding the locust, 144 - Summary of the answers given by correspondents, 145 - The invasion of 1854 in Kansas, 148 - in Nebraska, 151 - in Iowa and Minnesota, 153-in Colorado, 154 -in Dakota and Manitoba, 155 - Flight and ravages of a locust swarm, 156 -Food plants, 158 - Time of appearance of invading
The Rocky Mountain Locust-Continued. swarms, 160 - Eastcrn limits of loeust invasions, 161 - Native home of the species, 162 -Explanation of the migratory instinct, 164 -This locust cannot thrive in the Mississippi Valley, 164 - It is a snbalpine inscet, 165 - What injury may be cxpected in Missonri in 1875, 166 Ravages of migratory loensts in the Atlantie States, 167 - Description of the Atlantie Migratory Locust, 169 - Differenees between Caloptenus spretus, differentialis and atlanis, 170 - Injury from other, non-migratory, locusts, 171 - The Differential and Two-striped Locnsts, 173 - Enemies and parasites, 174 - Birds destroying locusts or their eggs, 174-The Silky Mite, 175-The Locnst Mite and Dr. LeBaron's description thereof, 176-The Anonymous Taehina-fly, 178-The Common Fleshfly, 180 - Remedies, 181 - Classifieation of proteetive measures, 181 Natural ageneies, 181 - Destruction of the eggs, 181 - Destruction of the young wingless locusts, 182 - Driving off the winged locusts, 184 Further suggestions, 185 - Loensts as food for man, 186 - The popular and seientific names of the inseet, 157 - Prairie fires vs. the Roeky Mountain Locnst, 189.
Aprendix to the article on the Rocky Mountan Locust
Letters of three correspondents from Texas and Kansas regarding Loeust invasions, 191.

REPORT VIII.

[Published May, 1876.]
Preface
Table of Contents V

NOXIOUS INSECTS.

The Colorado Potato-beetle

Damage during the jear, 1 - Abundant in Atlantie States, 1 - Swarming on Coney Island, 2-Injnring Egg-plant, 2- Its seientific name, 2— Additional enemies, 3 - Eaten by the Crow, 3 -Remedies, 3 - Cost of applying Paris green, 3 -Preparing the poison, 3 - Use of straw as a protection, 4-Machine for sprinkling, 4-Machine for brnshing off the inscets, 4-Experience with Paris green, 5-Experiments of Profs. R. C. Kedzie and Win. McMurtrie show that it may be used with safety, 6 Trial of other remedies, 6 -The insect's mative home, 8 -The theory that it came from the Roeky Mountain Region essentially correet, 10 Poisonous qualitics of the inseet discussed, 10.

Canker Worms

Two species long confonnded, 12-They differ generically; new genus (Paleacrita) proposed for one, 13 - The two compared in all stages, 13 , 14 - Characters of the genns Paleacrita, 17 - Distinguishod as Spring and Fall Canker-worms, 17 - Practical considerations from their differences of habit, 18 -Stunting the larve does not produce male moths, 19 -Traps recommended, $20,21$.
The Army Worm
Its generic name, 22 - The term "Army-Worm" applied to varions inseets,
23 - Past history of the Army Worm, 24 - Known since 1854 in Mis-
souri, 27 - It followed the 1×71 conflagration around Peshtigo, Wis.,
28 - Its history in 1875 ; very general all over the country, 28,29 -Its
history in Missonri in 1875, 30 - Sexual differenees, 30 - Sexual organs
illnstrated, 30, 32-Natnral history of the speeies, 32-Illustrated in
all states, 32, 33 - It oecurs in Europe, Asia, New Zealand, and Austra-

The Army Worm-Continued.
lia, 34 - Description of the egg, 34 - Where the eggs are laid, 34 - Conelusions drawn from strneture, 36, 37 - When the eggs are laid, 40 - In what state does the inseet hibernate?, $43-$ Habits of the Worm, 45Why it eseapes detcetion when young, 45-Why it travels in armies, 46-Time of its appearanee, 46-Are there one or two broods?, 47The Fall Army-worm, 48-How distinguished from the real Army Worm, 48 - Plants preferred by the Army Worm, 49 - Its sudden appearanee and disappearanee, 50 - It swarms during wet preceded by very dr sensons, 51 - Its natural enemies, illustrated, 52 -Remedies, 54-Philosophy of winter burning, 54, 55-Prevention, 55-Summary of the leading faets eoneerning it, 56.

The Rocky Mountain Locust

Prerious experienee in spriug 1867, 57 - Predictions rerified, 58 - General ontlook in spring of 1875,60 - Extent of country ravaged, 60 - The outlook in Missoui, 61 - Country rarcaged often as bare as in midwinter, 61-Aeeount by eounties, 62-Atchison County, 62-Andrew County, 62 -Benton Counts, 63 - Barton County, 63-Bates Connty, 63 - Buchanan Connty, 64 - C'aldwell Connty, 64 - Cass County, 64 Clay County, 6i-Clinton County, 68 -Dade Connty, 68 -DeKalb Connty, 69 -Gentry Countr, 69 - Hiekory County, 69 - Holt County, 69 - Henry Connty, 69 - Jackson Connty, 69 - Johnson Connty, 72 Lafayette Conuty, 73 - Nodaway Countr, 73 - Newton County, 73Pettis Counts, 73 - Platte County, 73 - Ray County, 74 -Saint Clair County, 75 - Vernon Connty, 76 - Condition of things in other States, 76-Kansas, 76 -Nebraska, 79 - Iowa, 81 - Minnesota, 81 - Colorado, 84-Wakota, 85 -Montana, 87 - Wyoming, 88 -Texas, 88 - Indian Territory, 88 - Manitoba, 89 - Damage done in Missouri, 89 - Destitntion in Missouri, 91 - Address of Relief Committee from Saint Lonis Merehants' Exehange, 93 - Cases of starvation, 94 - The Governor's proelamation, 95 - The loensts not a divine risitation, 97 - Natural history ; Mode of molting illustrated, 98 - Habits of the unfledgen foung, 100 Direetions in which the young travel, 101 - Rate at whieh they travel, 102 - They reached but a few miles east of where they hatched, 102 Not led by "Kings" or "Queens," 103 - The speeies taken for sueh, ilmstrated, 103,104 - The exodus in 1855, 104 -Time of leaving of the winged inseets, 104 - Direction taken by the wiuged inseets, 105 - Destination of the departing swarms, 106 - Native home of the speeies, 109 - Views previonsly expressed eonfirmed, 110-Conditions of migration, 112-Conditions which prevent the permanent settlement of the spreeies in Missouri, 113-Modification of the species by elimatie eonditions, 114, 155-Definition of the species, 114-How distinguished in all stages from speeies urost nearly allied, 117 - Experience in spring of $10-5,118$ - Contrast in summer and fall, 119 - No evil without some eompensating good, 120-Injury to fruit and fruit trees, 121-Food plants, $1 \because 1$ - Only one kind of plant not touched mender all eirenmstances, 121 - Chauges that followed the loensts, 121 - The widespread appearance of a new grass, ordinarily muntieed, 122 - Appearanee of large Worms, 123 - The Locusts did not return in the fall, 124 - Natural enemies, 124 -Remedies against the unfledged insects, 125 -Artifieial means of destroying the eggs, 125 - Yarious means of destroying the unfledged young, 126 - They are within man's control, 126 , - The proper ditel to make, 128 - Maehines used in Colorado, 129 - Best means of proteeting fruit trees, 130 - How to avert loeust injuries, 131 - Pre-

The Rocky Mountain Locust-Continnerl. rention, 131 - Legislation, both national and local. 132 - Bills before the Forty-fourth Congress, 133 - Necl of a National Entomological Commission, 133 - The bounties offered in Minnesota, 138 - The requisites of a good bounty law, 132,139 - How a bomnty law would work. 140 -Snggestions, 140 - Lessons of year, 142 - Locusts as fool for man. 143 - They have been nsed from time immemorial, and are used extensively at the present day, 145 - The Rocky Momatain species quite palatable, 146 - Mode of preparation, 147 - Falsc opinions and predietions, 140 - Unnecessary alarm cansed lof other species, 14^{2} - Injuries of native species in 1-75, 150 - Loenst flights in Illinois in 1575, 151 - They were composed of local speeies, 152,153 - Explanation of these Hights. 154 -Locust prospects in 1276,155 - No danger from them in Missouri, 156.

The Grape Phylloxera

The injuries not great in Missouri in 1875, 157 - Completion of its natural history, 157 - Where the winged female lays her eggs. 157, 161 - The sexed individnals ilmstrated, 158 - Description of the true female, 159 - Deseription of the impregnated egg. 159, 162-Practical considerations growing ont of these latest discoveries, 163 -Decortieation of the bark to destroy the impregnated egg, 163-The insect may be imported from one comntry to another on euttings as well as rooted plants, 163 - Best time to attack the root-liee, 163 - Phylloxera ravages in California, 163-Great destrnetion around Sonoma, 164 - Need of action by the State authorities, 164 - Oecurrence of Phylloxera in the Southern States, 164 - Report of Committee appointed by the American Pomological Soeiety, 165 - Its ocenrrence in Georgia, 166, 167-American Grapevines in Europe, 167 - Large denand for onr vines, 167 - The American vines flomrishing in Sonthern France where the European varicties perish, 167 - The orders for some varieties excected the supple, 168 Probable future demand, 168 .

INNONIOUS INSECTS.

The Yucca Borer

The only North American Buttertly whose larva has the boring habit, 169 - The arbitrary nature of classifieatory divisions, 170 - Buttertlies and Moths not casily separated, 170-Biological history of the species, 171 - Illustrations of all states, 171, 17z-Habits of the larra, 171, 172, 181 - Mode of pupation, 172, 180 - Flight of the imago, 173, 181 Position of wings when the imago rests or walks, 173-Bibliographical notes, 173 - Detailed descriptions of the different states, $174,175,181$ Structural characters illustrated, 175-Affinitics of the species, 176It is a true butterfly, belonging to the Hesperians, 1iz - Charaeters of the Castnians contrasted with those of Hesperians, 176, 177, 178- In elassification it is better to widen than restrict in the higher gronps, 179-Enemies of the Yucea Borer, 179-Concluding remarks, 179 Unsate to describe speeies from mere drawings, 179.

NOXIOUS INSECTS-Continued.
Supplementary Notes on the Army Worm
Completion of its natural history, 182 - Oviposition of the Moth described, 183-Egrs cleseribed, 183-Conclnsions previously arrived at verified, 184 - Description of the different larral stages, 184.
REPORT IX.
[Published March, 1877.]
Page.
Preface III
Table of Contents
Table of Contents V V
NONIOUS INSECTS.
Currant and Gooseberry Worms. 1There are several species having different habits, 1 - Three which maybe destroyed by similar methods, 1 - Botanical details as to the Cur-raut and Gooseberry, 2.
The Gooseberry Span-worm 3
Its natural history, 3-Most destructive gooselserry inscet in Missouri,3 -Generic nomenclature, 3 - Characters of the moth, 4 -Descriptionof the egg, 4 - Where the eggs are laid, 4 - The insect single-brooded,5 - How it spreads, 5 -A native species, 5 -Its past history, 5 - It pre-fers the Gooseberry to the Currant, 6 - The moth is closely imitated byone which greatly differs strncturally, 6-Parasites, 6 - Remedies, 7 -Other currant Span-worms, 7 .
The Imported Currant Worm7Belongs to the "False-caterpillars", 7 - The different specific names it hasreceived, 7 - An imported species, 8 - Its introdnction and spread, 8 -Independently imported at several castern points, 9 - Its natural his-tory, 9 - How the eggs are laid, 10 - Nature and habits of the Worm,11 - Characters of the parent flies, 12 - Preventive measures, 13 - Rem-edies, 13 - White hellebore the best, 13 - How liest used, 14, 15 - Theworm is not poisonons, 16 - Natural enemies, 17 - It furnishes a forcibleexample of Arrenotoky or the power of produciug male offspring with-out impregnation, 18 - Results of Parthenogenesis in different iusects, 18- It also furnishes an interesting instance of Defunctionation of specialparts, 19 - The saw of the female imperfect, compared with others,20 - Evolutionary bearings of this fact, 21 - Descriptive, 21 - Varia-tion in the antenne and wing veins, 23.
The Native Currant Worm 23
Wherein it differs from the imported species, 23 - Its habits, 24 - Where the eggs are laid, 25 -How the winter is passed, 25 -Its occurrence in Missouri, 26-Remedies, 26-Descriptive, 26.
The Strawberry Worm 27
Also a False-caterpillar, 27 - It has a wide range, 27 - How the cggs are deposited, 28 - Character and halits of the Worm, 28 -Remedies, 28 - Deseriptive, 28.Abbot's White Pine Worm29Destructive power of the insects of its genns in Germany, 29 - Evergreenswhich it prefers, 30 - Habits and characters of the Worm, 30 - Variationin the antennar, 30 - Characters of the perfect flics, 30,31 - How theeggs ars laid, 31 - Natural enemies, 31 - Remedies, 32 - Descriptive, 32 .
LeConte's Pine Worm32A more general feeder than Abbot's species, 32 - The close rescmblance ofthe Worms, 33-How they differ, 33 - Descriptive, 33 -Other speciesof the genus, 34.
The Colorado Potato-beetle 34Injury in the West in 1876,34 -Spread of the insect during the year,34,35 - Its great abundance on the Atlautic coast, 35 - Rate at whielit traveled since 1859,37 - An average of 88 miles a year, 37 - How it

The Colorado Potato-beetle-Continued. traveled, 37 ; principally in the beetle state, and greatly assisted hy man, 37 - Its migrating habit, 38 - Area invaded by it nearly $1,500,000$ square miles, 38 - Canses which timit its spread, 33 - Will it reach the Pacific slope ?, 39 - How it aftected the price of potatoes, 39 - The modification it has undergone, 40 - A mite parasite added to its natural enemies, 41 - Its introduction to Enrope, 42 - A living specimen found last summer in the Bremen dock yards, 42 - Could it live and multiply in Europe ?, 43 - Action taken by European governments to prevent its introduction, 44 -Consideration of the Kearney "Potato Pest Poison ", 45.

Further notes and experiments thereon, 47 - Two generations produced anmally at Saint Lenis, and a probable third generation, exceptionally, 48 - Summary of its natmral history, 49.

The Wheat-head Army-worm

A new enemy to wheat, 50 - First complaint of it in the East, 51 - First appearance in Kansas, 51 - Hahits and natural history, 52 - The egg differs from that of the Army Worm, 53 - Wherein the worm is distinguished from its destructive congener, 54 - Two broods each year, 54 Natural enemics, 54-Remedies, 55-Descriptive, 55.

The Rocky Mountain Locust.

It continues to interest the people of the West, 57 -Previous opinions justified, 57 - The invasion of 1876,59-Few in British America, 59 Condition of things in Montana, 59 - In Wyoming, 59 - In Dakota, 59 - In Minnesota, 60 ; locusts and alkali soil, 61 ; good done by Governor Pillsbury, of Minnesota, 61 - In Colorado, 62 - In Iowa, 63 - In Nebraska, 64 - In Kansas, 65 - In Missouri, 66 - Flights in opposite directions at the same time, 66 -Counties in Missouri that were overrun, 67 - Red-legged Locust troublesome in East Missouri, 68-Detailed reports from counties in Missonri, 68-Andrew County, 68-Atchison County, 68 - Barry County, 68 - Barton County, 69 - Bates County, 69 - Benton County, 69 - Buchanan Coninty, 69-Cass .County, 69 Cedar County, 70 -Caldwell County, 70 - Clay County, 70 -Dade Countr, 70 -DeKalb County, 70 -Gentry Coumty, 70 -Greene County, 71-Harrison County, 71 - Henry County, 71 - Hickory County, 71 Holt County, 71 - Jasper County, 72 —Jackson County, 73 — Johnson County, 73 -Lafayette County, 73-Lawrence County, 73 -McDonald County, 74-Newton County, 74-Nodaway County, 74-Pettis County, 74 -Platte County, 74 - Polk County, 75 -Ray County, 75 -Saint Clair County, 75 - Vernon County, 75 - In Indian Territory, 76 -In Texas, 76 - In Arkansas, 76 -Destination of the departing swarms of 1875,77 - They reached into British America, 78 -Sonrce of the swarms of 1876,79 -Eastern line reached, 80 -Rate at which the inseets spread, 80 -Direction of flight, 81 - Influence of wind in determining the course of Locust swarins, 81 - Locust flights east of the Mississippi, 81 - Geographical range of species, 82 - Causes which limit the spread of the Rocky Monntain Locust, 83 - Flights of Acridium Americamum, 84 - Does the female of the Rocky Mountain Locnst lay more than one egg-mass, 85 - How the eggs are laid, e6-Philosophy of the egg-mass, 87 - How the yonng locust escapes from the egg, 88-How it escapes from the ground, 90 - Aiditional natural enemies, 91-Animals which destroy the egge, 91 - The Anthomyia Egg-parasite, $9:$-The Common Flesh-fly, 95 -Other undetermined enemies of the eggs, $9:$-Insects which destroy the active locusts, 98 - Experi-
ments with the eggs and eonelusions therefrom, 99 - Experiments to test the effeets of alternately freezing and thawing, 99 - Experiments to test the intluenee of moisture upon the eggs, 104 - Experiments to test the effeets of burying at different depths and of pressing the soil, 104-Experiments to test the effeets of exposure to the free air, 104The Omaha Conferenee, 106-Remedies and suggestions, 108-Destruetion of the young or unfledged loeusts, 108 - Protection of fruit trees, 110 - Legislation, 111 - Aet passed by the Missomri legislature, 111 Acts passed by the Kansas legislature, 112 - Aet providing for the destruction of locusts in Minnesota, 114 - Area in which eggs were laid, 116-Condition of eggs, 117 - Temperature of the winter of 1876-77, 120 - Prospeets for $1877,121$.

INYOXIOUS INSECTS.

The Hellgrammite
Its curious egg-mass deseribed, 126 - Resembling bird-dung at a distance, 126 - Where laid, 127 - The Egg-burster, 127 - Charaeters and habits of the newly hatehed larra, 127 - Diffieulty of rearing it in still water, 128 - The eggs that have been hitherto mistaken for those of Corydalus, 128 - They are probably those of Belostoma grandis, 128.

The Yucca Borer

It is single-brooded, 129 - Will thrive in the latitude of Saint Lonis, 129 The larva molts quite often, 129 .

CORRECTIONS.

A list of errata is given for each volume, and they are here reproduced with such additional ones as were previonsly omitted. Where foreign terms were not properly accentuated in the Reports, it was often due to the imperfect "plant" possessed by the State printer. In counting lines the running page title is omitted.

REPORTI.

Page 8, line 21, for being read were.
Page 10, lime 1, for Figure $3,{ }^{3}$ read Figure $3,{ }^{2}$.
Page 12, line 20, for last read 1866.
Page 12, line 3 from bottom, after February add (1867).
Page 12, line 13 from bottom, for verter read venter.
Page 14, line 24, for hermaphrodite read agamic.
Page 14, line 32, for females read malcs.
Page 15, line 10 from bottom, for muscle-shaped read mussel-shaped.
Page 22, lime 2 from bottom, for pupas read pupe.
Page 30, note, for F. read T.
Page 31, line 15, for 37° read 38°.
Page 32, line 4, for Kreitz read Kreutz.
Page 32, lime 14 from bottom, for III read V.
Page 32 , line 7 from bottom, for XIII read VIII.
Page 38, line 5, for Tredeim read Tredeeim.
Page 47, line 16, for far read for.
Page 50, line 7, for none the less read no more.
Page 53 , line 28 , for laid read lain.
Page 54, line 4 from bottom, for hateh read are deposited.
Page 56, lines 5 and 12 , for to read at.
Page 58, line 15 from bottom, for Aspidiglossa read Aspidoglossa.
Page 64, line 26, omit again.
Page 67, line 11 from bottom, for class read branch.
Page 76, line 48, for Climbing Rustie read Climbing Cut-worm Moth.
Page 78, line 46, for mipuncta ta read unipuneta.
Page 86, line 21, and whcrever they oeeur, for Guénée read Guenée; and for Guén. read Guen.

Page 87, line 11 from bottom, for F . read T .
Page 96, note, line 4, for Wcst. read Wesm.
Page 112, line 3, for abreviated read ablureviated.
Page 114, line 1, after "inseet" read (Stiretrus fimbriatus, Say).
Page 120, line 30, after "Cottonwood" reat (Pemphigus vagabundus, Walsh).
Page 123, last line, for eriosoma read eriosomatis.
Page 132, line 16, for ampelopsis read ampelopsidis.
Page 133, in heading, for Codling read Berry Moth.
Page 133, line 24 from bottom, for precerling insect read Grape Curculio.
Page 134, line 3 from bottom, for Part V real Part VI.

Page 142, under the heading, add (Lepidormera tortricid.e).
Page 150, line 26, for thimidopterix real thymidopterigis.
Page 150, line 37 , for ferruginuous read ferruginous.
Page 154, in the heading, for zeus read zere.
Page 155, line 13, for zeas read ze.e.
Page 161, line 38, for Trallien read Trallian.
Page 166, under heading, add (Leridortera, Prpalidie).
Page 171, line 3 from bottom, for transformation read transformations.
Page 173, line 3 from bottom, for it read the more liquid parts.
Page 174, line 3 from bottom, for Solidaga read Soljdago.
Page 175, line 32, add front before wing.
Page 176, line 21, for throngh read into.
Page 177, line 26 , strike ont in.
Page 177, line 13, after coxe read trochanters.
Page 178, lines 2 and 3, for gelechia read gelecine.
Page 179, line 32, for assimilating rad assimulating.
Page 179, in heading and line 12 , for CHickweed read knotweed.
Page 179, lines 12, 13, for (Stellaria media) read (Polygomum aviculate.)
Page 180, line 7, for Cersium lanceolata read Cirsium Ianceolatum.

REPORTII.

Page 8, line 14 from bottom, for I have read has been.
Page 8, line 13, from bottom, before on read largely from Mr. Walsh's previous. writings.
Page 13, line 25, for cupable read eulpable.
Page 16, line 13, for lava read larva.
Page 23, line 6 from bottom, for hole read holes.
Page 32, line 17, for inseet read inseets.
Page 35, line 24, for Corimelcna read Corimelana.
Page 40, line 23, for Ophinsa read Ophiusa.
Page 41, line 25, for Laphrygma read Laphygma.
Page 50, line 5 from bottom, for leuca[i]ce read leucan[i]ce.
Page 53, line 1:, for perpulera read perpulchra.
Page 56, line 7 from bottom, for Salanum read Solanum.
Page 58, line 19, for eopalina read copallina.
Page 59, line 9 from bottom, for varigated read variegated.
Page 76, line 4 from bottom, for I read V.
Page 76, line 5 from bottom, for Dapluni read Daphnc.
Page 82 , line 25 , for one read our.
Page 92, line 3, for 125-131 rad 129-131.
Page 107, line 12, for Naturalista read Naturaliste.
Page 111, line 34, for crysalis read chrysalis.
Page 116, line 4 from bottom, for month read molt.
Page 118, line 2, for earved rad curved.

REPORTIII.

Page 6, line 3 from bottom, for Rosa read Rose; and for rosa read rosa.
Page 7, line 31, for Hylecctus read Hylecoctus.
Page 25, line 8 from bottom, for finely read finally.
Page 28, line 3 from bottom, for Holmgreu's read Holmgren's.
Page 30 , line 16 , for the read the.
Page 30, line 16, for eharacterize read distinguish.
Page 47, line 3, for Feunde read Feinde.
Page 55, line 50, for that read than.
Page 57, line 18 from bottom, add e before the first h.
Page 58, line 3 from bottom, for formulolosus read formidolosus.

Page 64, line 19, for Bignonio read Bignonia.
Page 7 , note, for I read II.
Page 95, line 26, for belongs read belonging.
Page 117, line 5 from bottom, for Harr. read Fabr.
Page 123, last line, for an read and.
Page 129, lines 12 and 17, for Colosoma and Calosoma.
Page 131, line 13 from bottom, for fauns retd fanna.
Page 135, line 33, for dints read dents; and line 21 , for a read b.
Page 136, line 22, for Guenèe read Guenée.
Page 136, line 33, for Furtsenthum Walldeck read Fiirstentlum Waldeck.
Page 145, line 35, strike out seeond the.
Page 146, line 24, add s to transformation.
Page 150, line 14, at end, add from an.
Page 151, line 12, for Cnythia read Cynthia.
Page 166, line 16 from bottom, strike ont first comma.
Page 165, line 6 from bottom, for phalangea read phalanga.
Page 169, line 33, for first i read e.
Page 170, line 10, for Nuaural read natural.

REPORTIV.

Page 6, first verse, for grow read grows.
Page 19, line 8 , for 5 read 6.
Page 20, last line but one, for R read U.
Page 22, last line but one, for Aleohora read Aleochara.
Page 40, line 9 from bottom, for occular read oeular.
Page 41, line 59, for Vt. read Ct.
Page 41, line 15 from bottom, after "Larva" read Lengtlı 0.5 inch.
Page 42, line 5, add a comma after Lepidoptera.
Page 43, line 6 from bottom, for claud read elond.
Page 46, line 29, for edgae read edge.
Page 46, line under heading, add a comma after Lepidoptera.
Page 47, line 30 , for rhomboidally read trapezoidally.
Page 33, line 25, and page 54, line 27, for basillare read basilare.
Page 53, strike out all after for many in the note.
Page 59, line 10 from bottom, add winged before female.
Page 67, line 4 from bottom, for Cordifolia read Riparia.
Page 63, line 2 from bottom, for Oid read Oil.
Page 75, third line in heading, add a comma after Lepidoptera.
Page 103, third line of note, for insest read insert.
Page 105, line 8 from bottom, for ehrysallis read chrysalis.
Page 110, line 3 , for chalsis read chalcis.
Page 110, line 29, for extramatis read extrematis.
Page 112, in the heading, for Hiibn read Drury.
Page 132, line 19, for Chesnut read Chestunt.
Page 137, line 1, for Pernyi Silkworm read Perny Silkworm.
Page 137, under fig. 60, for Pernyi read Perny.

REPORTV.

Page 7, line 22, for stage read state.
Page 7, seeond line from bottom, strike out second the.
Page 8, explanation of Fig. 1, first line, for and read the.
Page 9, under Fig. 2, for Bembex fasclata read Vespa macllata.
Page 9, line 11, for last and reud with the.
Page 11, line 9 from bottom, after worm add moth.
Page 11, line 3, from bottom, for four read eight.

Page 19, Fig. 5, for Euschistes read Euscmistes.
Page 13, line 3 from bottom, for larvae are read larva is.
Page 14, inder Fig. 8, for Edipoda differentine read Caloptenus differenti-
alis.
Page 18, line 10 from bottom, for pollenation read pollination.
Page 19, line 30, for Lymexilon read Lymexylon.
Page 21, line 8 from bottom, for Townsend read Townend.
Page 24, line 13, for : prial read aërial.
Page 33, in Fig. 15, for clorotorm read chloroform.
Page 43, line 6 from bottom, after or add in.
Page 51, line 17, for J. S read S. J.
Page 56, line 24, for how read that.
Page 52, line 21, for petcolaris real petiolaris.
Page 58, line 16 from bottom, for decrepid read decrepit.
Page 61, line 18 , for hypertrophized read hypertrophied.
Page 66, line 13, for Cordifolio real Cordifolia.
Page 67, line 27, for with read to.
Page 67, line 2^{2}, ofter and add to offer.
Page 83, line 13 from bottom, for who read as.
Page 85, line 17 from bottom, after fecundation add either the.
Page 85, line 18 from bottom, strike out either and after female add would.
Page 86, line 2 from bottom, for and read and.
Page 90, line 17, for had read has.
Page 100, last line, add a comma before say.
Page 101, line 10, for nole read noli.
Page 103, line 9, for Carye read carye.
Page 113, line 40, for 19 read 41.
Page 115, for exerted read exserted.
Page 120 , line 25 , for regnlary read regularly.
Page 126, line 4 in note, for querciti read querceti.
Page 126, line 5 in note, for pithicium read pithecium.
Page 129, line 14, omit color of the.
Page 139, for Papineau read Popenoe.
Pages 140 and 141, wherever Belvosia occurs read Belvoisia.
Page 156, line 6, for consumes read has consumed.

REPORTVI.

Page 8, last line, for 1874 read 1873.
Page 12, line 13, for Sisimbrium read Sisymbrium.
Page 12, line 25, for osciamus read oseyamus.
Page 12, lines 13, 14, for Poligonum read Polygonum.
Page 27, line 2 from bottom, for pecorus read pecoris.
Page 27, line 15 from bottom, for vireus read virens.
Page 28, last line, for XV read XVI.
Page 35, line 3, for three read four.
Page 37, line 16 , for first by read be.
Page 42, line 11, for the read certain.
Page 43, line 26, strike out to be presently treated of.
Page 47, remore "Telegraph" from "Summer grape" to that of "Northern Fux."
Page 51, line 7 from bottom, for insidious read insidiosus.
Page 53, line 18, for Maguin read Mégnin.
Page 82 , line 5 from bottom, for New read West.
Page 87, line 3 from bottom, for Bignonio read Bignonia.
Page 92, line 6, for Callimorpa read Callimorpha.
Page 94, line 14 from bottom, for point read joint.
Page 100, line 31, omit comma after lardarius.

Page $10 z$, line $2 z$, for orage read orange.
Page 111, line 6, for perspicillata read tripunctata.
Page 118, last line, for P'hytopoga read Phytophaga.
Page 136, line 15, for Rosel von Rösenhof read Rösel von Rosenhof.
Page 141, line 9, after found add that.
Page 150, line 9 , for pictures of read imprints on.
Page 154, line 6, strike ont t.
Page 15t, line 16, for it is read they are.
Page 156, line 8 , after and add more.
Page 162, line 10 , for elytram read elytrum.

REPORT VII.

Page IV, line 9, for contemptibly read eontemptuonsly.
Page 1, line 10, after and read invaled the.
Page 5, line 16, for State read state.
Page 7, line 7, for calubrine read colubrine.
Page 11, line 32, for stoma read stomata.
Page 11, line 33, for dilutent read diluent.
Page 11, line 37, for J read S.
Page 12 , line 13 , for W. K read R. C.
Page 17, last liue, for Dep. de l'Hèrault read Dép, de l'Hérault.
Page 21, line 14 from bottom, for Lexcopterles read leucoptercs.
Page 39, under Fig. 6, for Ttis read Trin.
Page 52, line 14, for MeWallie read MeNallie.
Page 52, line 46, for Priuceton read Purinton.
Page 75, line 32, for breed read bred.
Page 80, line 7 from bottom, add a comma before and after pometaria.
Page 81, last line, for nidi read nidus.
Page 94, in the sulb-head, for Gall-inimbiting read noot-minabitisg.
Page 99, line 7, in note, for nerves read trachew.
Page 108, line 17, for two read too.
Page 117, line 15, for Y read IV.
Page 11α, line 1% from bottom, for hight read height.
Page 147, line 20, for 1873 read $1 \approx 66$.
Page 162, line 20, for larva retd lava.

REPORT VIII.

Page III, line 13 from bottom, add 1 before the 3 .
Page 7, line 26, for eopper read soda.
Page 22, in notes, transpose the * and \dagger.
Page 34, line 6, for tuliètes read tuélites.
Page 3t, line 11, for thrce-hundredths read two-hundredths.
Page 37, under Fig. 23, for exerted read exserted.
Page 33, line 6, for glass read grass.
Page 52, line 1 in note, for Doliconyx read Dolichonyx, and for orizicora read oryzicora.
Page 53, line 32, for veridascens read rividascens.
Page 92, secoud line, in explanation of Fig., for e read e and for c read e.
Page 100, line 2, after they add are still imperceptible; in the third stage (after second molt) they.
Page 100, line 4, for third read fourtl, and for second read third.
Page 100, line 7, for fourth read fitth, and for third read fourth.
Page 100, line 8, for fourth read ifth and for fifth read sixth.
Page 114, line 7 from bottom, for distingulsh read distinguish.

Page 115, line 5, after histories add a comma.
Pagre 115, line 5 from bottom, for Pesotettix read Pezotettix.
Page 121 , line 18 , after limbs add and.
Page 149, under Fig. 46, for larva read pupa.
Page 150, line 10, for gran read gramn.
Page 154, line 4 from bottom, for sheli read shell.

REPORTIX.

Page 6, line 96, insert after "moth" (Euphanessa mendica, Walk.).
Page 15, line 3 , for entite read entire.
Page 29, in explanation of cut, for Abhott's reud dbbot's.
Page 50, explanation of eut, for e read c.
Page 50, line 3 from bottom, for Hubner rad Hiibner.
Page 54, last line, in place of the comma, write is.
Page 55, line 1, for the other read the second.
Page 55, line 9 from bottom, for m . m reud mm.
Page 55, line 7 from bottom, strike out the on.
Page 56, line 1, for m. in read mm.
Page 56, line 2, for the last and read anal.
Page 56, line 32, commence a new \boldsymbol{T} with "Chrssalis" and ita'icizo it,
Page 57 , in the heading for Spretus read spretus.
Page 58, line 14, strike out have.
Page 27 , strike out the g in line 17 and also in figure.
Page 89 , line 13 , strike out the i after embryon.
Page 90, last line, for ambion read amnion.
Page 98, line 11 from bottom, for Compoplex 1exd Cantpop'ex.
Page 98, line 6, add a comma before De Geer.
Page 93, note *, for Bastardii read Bastardi.
Page 92, under Fig. 22, for Bastardir read Basmardi。

NOTES AND ADDITIONS.

Under this head it is not my purpose to publish the many additional notes of observations which have been made by myself and others on the rarious insects treated of in the reports; but rather to indicate a few of the more important facts, especially such as are unpublished and bear on life-histories left incomplete. As, in preparing the reports, the older and better known generic nomenclature was almost uniformly employed, it is thought advisable to indicate in this bulletin the more recent nomenclature, and this is accordingly done either in these "Notes" or in connection with the reproduced "Descriptions of New Species" which follow:

HYMENOPTERA.

Stizus grandis Say (Rep. I, p. 27, Fig. 12)—This has been shown by Mr. W. H. Patton (Bull. U. S. Geol.-Geog. Survey, vol. V, p. 342) to be only a variety of speciosus Drury, which is the type of the genus Sphecius Dahlb.

Crytutus extrematis Cress. (Rep. IV, p. 111)-The questions in regard to the character of C. samiae Pack. have been settled by Dr. Hagen from an examination or the types (Bull. Buff. Soc. Nat. Sci., II, 206; 1875) confirming the conclusion which I came to. In Bulletin No. 3 of the Commission (p. 47) I have suggested that extrematis should sink as a synonym of samic, because two species (one of which is nuncius) were combined under it in the original description.

Microgaster militaris Walsh (Rep. I, p. 89 and subsequently)—This is an Apanteles* (See my Notes on N. A. Microgasters, etc. (Extr. from Trans. St. Louis Ac. Sc. IV), p. 19.)

Antigaster mirabilis Walsh (Rep. VI, p. 162)-Mr. L. O. Howard has shown (Cam. Ent. October, 1880. p. 209, and February, 1881, p. 31) that the habit of rolling back is not uncommon in the Eupelnides, and that Autigaster cannot well be separated from Eupelmus as at present understood.

COLEOPTERA.

Carabid larve (Rep. IX, p. 97)-The second larva mentioned on this page was subsequently reared by me to the perfect state and proved to be Amara obesa Say. It will be found figured and described in the First Report of the Commission (p. 290).

Lebia grandis, Hentz (Rep. III, p. 100)-This belongs to Claudoir's genus Loxopeza.
Lebia atriventris Say (Rep. VIII, p. 3)—Belongs to Chandoir's genus Loxopeza.
Hippodamia maculata, DeGeer (Rep. I, p. 112 and subsequently)-Now referred to Mulsant's genus Megilla. It does not appear that this species occurs also in Europe as stated in the text.

Coccinella munda Say (Rep. II, p. 25)-This is now considered synonymous with Cycloneda sanguinea Linn.
Coccinella picta Randall (Rep. V, p. 101)-Now kuown as Harmouia pictu.

Mrsta 15-puxctata, Oliv. (Rep. IV, p. 18) -This has been referred to the genus Anatis, Mulsant.
Lachyostera quercina, Knoch. (Rep. 1, p. 155)-This is synonymons with fusca Fröhlich, which las priority. The fungus affecting it (p. 153 and Rep. 6, p. 125) is Cordycéps ravenelii Berkeley. (See American Entomologist, III, p. 139.)

Chauliogxatius pentsplyanicus, De Geer (Rep. I, p. 57 and subsequently)-This is now known as Ch. cmoricanus Forst., the latter name having priority. For an account of the cggs and young larve, see Second Report of the Commission, p. 261.
Saperda bivittata Say (Rep. I, p. 42)-This is now admitted to be a synonym of candida Fabr. For a correct description of the eggs and mode of oviposition, see an article by me in New York Weckly Tribune, Feh. 20, 1878.
Bruchu's pisi Limu. (Rep. III, p. 44)-This name of the 12th edition of Linnaeus's "Systema Nature" gives way in modern catalogues to pisorum L. of the 10 th edition.
Fidia viticid. Walsh (Rep. I, p. 32)-This species is not mentioned by Crotch in his "Naterials for the Study of the Plytophaga of the U. S." (Proc. Ac. Nat. Sc. Phil., 1873), but his Fidia murina (1. c. p.33) is modoubtedly synonymons with Walsh's riticida, the latter name having priority by several years. In Croteh's "Check list" this species is also omitted, but the Fillu vitis Walsh in the "Omissions" to that list (p.127) is probably meant for viticilde.
Haltica chalybea, Illiger (Kep. III, p. 79)-This belongs to the genus Graptodera Cherr.
Haltica cuclumeris Harris (Rep. I, p. 101)-This is now referred to the genus Epitrix, Foudras.
Physonota quinquepunctata Walsh \& Riley (Rep. II, p. 59)-This is symonymons with Ph. unipunctuta (Say), there being no question as to the specific identity of the two, both having been bred by Mr. F. H. Chittenden, of Ithaca, N. Y., from larvet on a wild sun-flower (Helienthus).
Cassida nigripes Oliv. (Rep. II, p. 63) -The eggs of this species are much like those of aurichalcen (Rep. II, Fig. 31) in size, form and color, though the spine-like appendages break off more easily. They may, however, be distinguished by being larger (1.6^{mm} long withont projections), having, in fact, nearly donble the bulk, and by the flat posteriorly projecting piece which hears the spine-like appendages being generally greatly developed so as sometimes to extend beyond the apex fully one-third the length of the whole egg. Sometimes this piece divides distinctly into three spines, but in other cases it is quite blunt.

Cassida bivittata Say (Rep. II, p. 61)-The eggs of this species are pale and ovoid, just 1^{mm} long, but invariably covered with a yellowish secretion which dries and spreads out each side, and this by a black excrementitions material which gives the egg from above the appearance of an ovoid bit of excrement flattened on the ad. hering side. The eggs are laid singly or in twos or threes.

Cassida aurichalcea Fabr. (Rep. II, p. G2)-This is now referred to the genus Coptocycla Cherr.

Cassida pallida Herbst (Rep. II p. 62)-This is now recognized as a synonym of Coptocycla aurichaleca (Fabr.).

Coptocycla guttata, Oliv. (Rep. II, p. 63)-The eggs of this species, which I have often since observed, are deposited singly or in twos, threes or fours. They are rather more than 1^{mm} long, of the same general form and charaeter as those of Cassida birittata, but more narrow and elongate. The color is pale yellowish and translncent. The egg is always covered with a riscid flnid whieh dries to form a transparent covering verging to fulvons or gamboge in color. This covering almost always spreads out on each side of the egg in ray-like ridges, those on each side parallel and slightly oblique, and whenever the egg is single these ridges are remarkably regular and have a neat appearance. There is occasionally on the top of this a varying amome of ex-
crement. The structure of the covering is similar to that found in the egg of Cassida tcxana Cr. (which feeds on Solanum cloagnifolium), where, however, the ribs are finer and transverse, and there is no excrementitious covering. The newly hatched larva of guttate, like that of the other species is whitish, strongly reealling in general appearance an ordinary mite, the head not being concealed as it subsequently is, the hairs at the tip of the legs being frequently clavate or knobbed, and resembling those on the young of many Coccids. The marginal spines and the anal fork are quite well developed but simpler than in the subsequent larval stages. This newly hatched larva is quite nimble and crawls easily over glass.
Deloyala clavata, Olit. (Rcp. II, p. 56) -Now referted to the genus Coptocycla.
Blister-beftles (Rep. 1, p. 96 .f.)-The larvie feed on locust eggs. For account of their larval economy see my paper "On the larval Characters and Habits of the Blister-beetles," etc., Trans. Ac. Sc. St. Lonis III, p. 544 ff. : also Reports of the Commission I, p. 292 ff . ; II, 262 ff . Remarks on synonymy are also there given, but the following may be repeated.

Lytta cinerea Fabr. (Rcp. I, p. 97)-This is now known as Muerobaris unicolor (Kirby).
Lytta murina Lcc. (Rep. I, p. 98)—This is a color variety of Macrobasis unicolor.
Litta marginata Fabr. (Rep. I, p. 98)-This is believed by Hom to be a color-variety of Epicaute cinerea (Forst.).

Lytta atrata Fabr. (Rep. I, p. 9z)—This is the Epictuta pensylremica (De Geer) of Crotch's List.
Anthonomus pruxicida, Walsh. (Rep. III, p. 39) - Upou this species, whieh is a synonym of scutcllaris Lec., Dr. Leconte has since fomded the genus Coccotorus (Proc. Am. Philos. Soc. vol. XV, 1876, p. 193).
Conotrachelus nenuphar, Hbst. (Rep. III, p. 127, note) - The phytophagic variety of this species from Walnut and Butternut has since been charaeterized by Dr. Leconte as a distinct species, C. juglemdis (Proc. Am. Philos. Soc. vol. XV, p. 226).
Celiodes inequalis, Say (Rcp. I, p. 128) - Dr. Leconte has since founded upou this species the genus Craponius (Proc. Am. Philos. Soc. vol. XV, 1876, p.268). The egg of this snout-beetle is quite large, bright yellow in color and deposited in a cavity half as large as the beetle, thongh the puncture leading to it is small. The lateral angularities or tubercles of the joints, as described by Walsh, are quite charaeteristic, and the dorsal view in my figure, given to show them, convers a somewhat false impression of the larva, which is more or less curved, and has the gencral claracteristics of Curculionid larve. The figure is rather more attenuated than it should be. That the beetle hibernates I have since proved beyond question.

Baridius trinotatus Say (Rep. I, p. 93) - Dr. Leconte (Proc. Am. Philos. Soc. XV, 1876, p. 287) has since established for this and two allied species the genus Trichobaris.

Sphenorhorus zee Walsh (Rep. III, p. 59) - This has been previously described by Mr. Uhler as S. sculptilis (Proc. Ac. Phil. VII, 1855, p. 416).

Spienophorus pulchellus Schenherr (Rep. III, p. 60) - As intimated in the footnote on the same page, this species is synonymous with Say's S. 13-punctatus, for which species and for Sphcnophorus pustulosus Gyllh. Dr. Leconte has established the genus Rhodobenus (Proc. Am. Philos. Soc. vol. XV, 1876, p. 332). I have reared both, and also intermediate forms, from Helianthins in Texas, and Ambrosia in Missouri.

Scolytus Carye Riley (Rep. V, p. 107) - Dr. Leconte (Proc. Am. Phil. Soc. XV, 1876, p. 371) has since decided that 4 -spinosus Say is the of of this species, and Say's name consequently obtains.

LEPIDOPTERA.

Papilio philenor Drury (Rep. II, p. 116) - Referred by Scudder to Huibner's genus Laërtias. For further notes and description of the egg and young larva, see Canadian Entomologist, January, 1881, p. 9, and American Naturalist, April, 1881, p. 327.

Danals ancimpres, Fabr. (Rep. III, p. 143) - For further facts respecting the swarming and migrations of this buttertly, see the Americun Entomologist (ILI, p 101), and for a fuller and more accurate account of the mode of pupation, see my paper on the "Philosophy of the Pupation of Butterflies and particularly of the Nymphalide" (Proc. Am. Ass. Adtr. Sc. vol. XXVIII, 1es0).

Egeria acervi, Clem. (Rep. VI, p. 110)-Mr. D. S. Kellicott has an interesting article in the Canadiun Entomologist for January, 18:1, on the Egerians inhabiting the vicinity of Butfalo, N. Y., in which he states that the chrysalis of this species in his pocality does not agree with my description as "unarmed," if that description refers to the dorso-abdominal teeth. A reëxamination of my specimens shows that my statement applies to the absence of these teeth. It is, howerer, possible that there is some variation in this regard and that the eastern specimens from the Hard maple differ from the western ones from the soft maple in having the teeth as indicated by Mr. Kellicott.

Arctia Isabella, Smith (Rep. IV, p. 143)—Referred to Pyrwherctia Packard. For further account of larval variation and parasites, see Americon Entomologist, III, p, 134 (June, 1880).

Hyphanteld textor Harr. (Rep. III, 130)-There is un doubt in my mind, from frequent breeding of specimens, that this is syonymous with cunea Drury and punctata Fitch, which are but varieties, Drurg's name having priority.

Callimonifa fulvicosta, Clem. (Rep. III, 132)—Grote and Robinson give the synonymy of this species in their "List of Lepidoptera of N. A.," etc., lecontei Boist. haring priority. The late Jacob Boll bred all the forms from larve feeding on the same species of plant.

Samia columbla Smith (Rep. IV, p. 10f)-Mr. Herman Strecker has given a beantiful figure of the male of this species in his "Lepidoptera Rhopaloceres and Heteroceres, etc.," 1875 (Pl. XII, Fig. 3), and MIr. F. B. Caulfield has described and figured the larva (Camadian Entomologist, X, p. 41, 1078) showing that it is structurally identical with that of cecropia and differs only in the intenser green of the bory, in the latera I tubercles and bases of the others being white instead of pale blue and in the upper thoracic tubercles being of a deeper coral-red. It accords more with the cccropia larva in the fourth stage. It is placed as a good species in Grote's "List of N. A. Platypterices," etc. (Am. Phil. Soc., 1874), but I am still of opinion that it should not be considered a distinct species but simply a well-marked local color-variety worthy of name. There is great variation in color, whether of the larva, cocoon or imago, in cecropia.

Callosama angulifera, Walker (Rep. IV, p. 12:, note)-This is still considered a good species by systematists. Mri. Jno. Akhurst, of Brooklyn, N. Y., informs me that he finds it rather constant from larve which seem to differ in no respeet from those of promethea, but which feed on the Tulip tree (Liriodendron tulipifera), and make the cocoon near the ground without pedicel. I learn from Dr. Packard that Mr. Uhler has bred both it and promethia from the same lot of larvie.

Clisiocamipa sylvatica Harr. (Rep. III, 121)-This isnow referred to disstria Hiibn., which has priority.
Agrotis inermis Harr. (Rep. I, p. 72)-This is now recoguized to be identical with the European A. saucia Treitschke.

Noctua clandestina Harr. (Rep. I, p 79)-An Agrotis.
Agrotis telifera Harr. (Rep. I, p. 80)-This is now recognized as the Enropean A. ypsilon Hiifu. = A. suffusa (S. V.) = A. ortonii Pack.

Agrotis subgothica Harr. (Rep. I, p. 81)-The moth represented under this name at Fig. 29, a, has since been described by Grote as A. herilis, and that at Fig. 29, b, has since been described by Lintner as A. tricost. (Notes on some N. Y. Noctuide, Ent. Cont. III in Rep. N. Y. St. Mus. Nat. Hist., 18:2, p. 159.)

Agrotis faculifera Gucn. (Rep. I, p. 82)—This is the true subyothica of Haw(See Grote, List of Noctuidæ of N. A., Bulletin Buffalo Soc. Nat. Sc. II, 1874, and Lintncr l.c.)
Agrotis devastator, Brace (Rep. I, p. 83)—Grote refers it to Hadena.
Celena rexigera Stepheus (Rep. I, p. 86)—Referred by Grote to Hadena. Specimens in the Fitch collection marked with names (evidently from Walker) infecta, egens, defectua, subcadens? and murcimachlata seem to be all synonyms and mere variations.

Prodenia autumnalis Riley (Rep. III, p. 116 and subsequently)-As stated in the 8th Report (p. 48) this in the more typical form is recognized as Laphygma frugiperda, Sm. \& Abb. The variety obscura, as Prof. Zeller, who has seen it, informs me is so near the European exigua Hiibn. that it is not easily distinguished.

Prodenia commeline, Sin. \& Abb. (Rep. I, p. 88, and III, p. 113)-Dr. Leon F. Harves (Bull. Buff. Soc. Nat. Sci., vol. Il, pp. 274, 275; 1875) has since proposed. specific names for two of the forms hitherto considered to be but varieties of commelinc. The moth represented at Fig. 43, c, of the Third Report, is named by him flacimedia, that at Fig. 48, b, lincatclla, the true commeline, being a larger species. From larve with the series of black triangles bordered exteriorly by a yellow line (such as are represented on Plate I, Fig. 12 of Rep. I, and at Fig. 48 a of Rep. III) I have bred the flacimedia. But larvee found on cotton in the Southern States, and differing in having black triangles on the sccond joint only, and also varying greatly in coloration, have produced the same moth. Abbot's figure of the larva of commelince shows the full series of black triangles, but without ans yellow exterior line.

Gortyna nitela Guen. (Rep. I, p. 92)-I have proved by breeding that G. nebris. Gu. is but a large, southern form of this species. Iu the Southern States it is most common in stems of Ambrosid trifila, often producing a swelling or pseudo-gall. Both forms are indiscriminately bred with intermediate variations. See an article by Miss E. A. Smith (7th Report on the insects of Illinois, Crrus Thomas, pp. 112-114) for additional food-plants and the habit of the younger larve to infest wheat-stalks, corn, etc. See also Am. Eut. I, p. 252; my "Potato Pests" (Orange, Judd \& Co., 1877, p. 91) and Prairic Farmer, August 11, 187\%. The insect normally pupates in the stem. and when infesting thin stalks like those of most cereals and blue-grass (in which it is also found) often of necessity leaves one stalk for another.
Avomis mylina, Say (Rep. II, p. 37; VI, 17)-This has since been referred by Grote to Hiibner's Aletia argillacea, which has heen generally adopted. See Bulletin 3 of the Commission on the Cotton Worm. While it will doubtless be found convenient in future to separate it from the other species of the genus Anomis, and Hiibuer's generic name may therefore obtain, I must confess, after a careful examination of Hiibner's figure of argillacea, to grave doubts as to the correctness of Grote's reference thercto of our Cotton-worm Moth (xylina, Say). Hiibner's figure lacks several of the most constant characteristics of xylina. It is fulvo-testaceous shaded with brown, with the under side bright yellow. It lacks the three white specks on primaries and has a dark (orbicnlar?) spot in place of the outer one. It has a large white circular spot with black annulus in place of the dusky elongate discal spot with its double pupil. The wary lines are almost black and differ in form ; the fringes are unicolorous, and the abdomen is narrower. The figure more nearls represents in fact a species which I have received from Bahia, Brazil, and which differs from xylima, though the larsa (also quite differeut) feeds on cotton.

We are all iuclined to follow determinations of those who make a specialty of any group, but after due allowance for faulty coloring in Hiibuer's figure, I am constrained to believe that in this instance Mr. Grote has been in fault.

Canker-woras (Rep. VIII, p. 12) -For additional remarks as to the generic characters of the two Canker-worms, see my paper "On the differences between Auisoptcryx pometaria Harr. and Anisopteryx cescularia W. V., with remarks on the genus Paleacrita. (Trans. Ac. Sc. St. Louis, Vol. III, p. 573 fi.)

Gallerea cereaya, L. (Rep. I, p. 166)-This is the mellonella L. of the 10 th edition Syst. Naturie.

Pempelia grossularle Packard (Rep. I, p. 140) - The Enropean Zophodia conrolutella Hübn. (I'hycis grossulariclla Treitschke), which has precisely similar habits, closely resembles this species. In 1871 I compared it with this last in Mr. Stainton's collection and with specimens received from Prof. Zcller and could detect no essential differences. The European specimens are slightly larger, with broader wings and usually clearer, paler gray coloring. Colorational markings are, however, vers variable in specimens from both sides of the Atlantic.
P. grossulurice Packard was subsequently described by Grote as Dakruma turbatella (Bull. U. S. Geol.-Geog. Surver, IV, No. 3, p. 202 ; 1878). Dakruma scems to differ from Zophodia in nothing but the absence of the basal portion of the subcostal vein and possibly, although this character is not mentioned br Grote, in the recurved palpi. According to the synoptical table given by Heinemann, grossularice would fall in the genus Stenoptycha, distinguished from Zophodia by the recurred palpi. We may well question the generic value of this character, for different authors describe it quite differently: thus, Heinemann describes the palpi of Stenoptycha and Homeosoma as recurved, whereas Grote describes them as porrect in these two genera, if we accept his statement that Honora Grote is to be cousidered a scetion of Stenoptycha: there appears also to be a difference in position in specimens of the same species, according as the palpi are hearily scaled or lave lost the scales. From the known individual variation in the renation of these and other moths, especially in the hind wings, we cannot attach any specific, much less any generic, value to the slight difference in the subcostal rein of Dekruma noted above. Moreover, anthentic specimens of grossularie do not appear to possess this character of Inakruma. I am, therefore, of opinion that a study of sufficient material from both continents will prove the two specifically identical, or at the most that onr American inscet is a variety, and that Dakruma will not obtain. Packard is of this opinion, as in the later editions of his Guide the species is called Myelois concolutella.

Penthina vitivorana Packard (Rep. I, p. 133) - This is identical with a Emropean insect haring the same habits. It was first described over a century since by Schiffermiller \& Denis as Tortrix botrana, and has becn referred to varions genera since, and finally to Eudemis Hiibn., so that the insect should be known as Eudemis botrant (Schiff.). Conchylis ambiguella (Hiibn.) has very similar habits in Europe. See Nürdlinger's "Die Kleinen Feinde der Land wirthschaft," p 424 ff . It is the Lobesia botrana of the later editions of Packard's Guide.

Euryptychia saligneana Clem. (Rep. II, 134). - This according to Prof. Fernald, who has seen the type, is the same as Clemens's Hedya scudderiana (Proc. Acad. Sci. Phila., $1860, \mathrm{p} .358$), the description of which is very brief and presumably taken from a female. The genus Euryptychia (Proc. Ent. Soc. Phila. V, 140) is founded on the male, which has a broad fold extending to the middle of costa on the primaries and covering up a pencil of yellowish hairs. Zeller subsequently redescribed it as Padisca affusana (Beiträge, etc., pt. III, p. 101 [307]). From a comparison of female specimens I am led to believe that this is the same species that is commonly known in Europeas Spilonota roborana Schiff., though in Staudinger and Wocke's Catalogue cynosbana Fabr., described in 1875 , is given the priority and aquana Hiibn, is placed as a synonym. The obliquity of the edge of the basal dark patch and the details of the ocellated spot upon which species hare been separated, I find to be variable.

The insect in Europe is known to feed on the leaf-buds of the rose. I have abundant proof that in this comntry it is not a gall-maker, but, as was inferred in the Report, an ingniline. I have found its larva feeding upon the flowers as well as amid the terminal leares of the Golden-rod, and have also found it in other galls. When feeding in the more exposed positions it generally has a carneons or rosy tint.

Anchylopera fragarie W. \& R. (Rep. I, 142) - This has been referred to Phoxopteris comptana Fröhl., and while the two very closely resemble each other Prof. Fernald informs me that he yet believes fragarice to be distinct.

Eta compta, Clem. (Rep. I, p. 151) -Notwithstanding Mr. Grotedoubtsthe identity of this inseet with Craner's Phalena punctella, there is no question in my mind about it, and I entirely agree with Zeller, who makes also the Tinea pustulella Fabr. a synonym (Beitr. z. Kenntn. N. A. Nachfalter II, p. © ${ }^{2}$). It was first lescribed in this conntry in 1856 by Fitch as Deiopeia aurea (3rd Rep. Ins. N. Y., p. 163.) See also "Zygaenide and Bombyeidte of N. A." by R. H. Stretch, 1872, pp. 159 and 241.

The egg of this insect is one of the most singular Lepidopterons eggs with whieh I am familiar. I have found it numerously in the South in midsummer. It is 0.9^{mm} long, soft and plastic so as to be variable in form ; but when laid (as it often is) on the web which the young larve make, where it takes on the more natural form, it is ovoid, somewhat eompressed, with frequently a mediau ridge and one end narrowed and prodneed into a short neck. The color is cream-jellow and the delieate shell is corrugnlate. It is laid singly and generally slightly attached by the broad side to the side of the mid-rib of the tenderest leares, and its contact (by virtue, doubtless, of some poisonous liquid with which it is laid) eauses a well defined swelling of the leaf-rein.

The species is placed among the Zygonido in Grote and Robinson's List, and has evidently more affinities therewith than with the Tentida.

Pronuba yuccasella Riley (Rep. V, p. 150 and subsequently) -Fior further facts regarding this speeies, see my papers in Trans. St. Louis Ac. Sc. III, p. 563 ; American Entomologist III, pp. 141, 182, 293, and also a paper read before the Ameriean Assoeiation for the Advancentent of Seienee at Boston, Aug., 1880, and to be published in the Proceedings of the Assoeiation for that year.

PTEROpHorus periscelidictylus (Rep. III, p. 65)-This belougs to the genus Oxyptilus, Zeller.

HETEROPTERA.

Arma spinosa Dallas (Rep. II, p. 113 and subsequently)-Now referved to Stal's genns Podisus.

Euschistus punctipes, Say (Rep. IV, p. 19 and subsequently.) -This is now known as Euschistus variolarius Beauv., this last having priority over Say's name.

Coreus tristis, De Geer (Rep. I, p. 113 and subscquently)-Belongs to Amyot \mathcal{E} Serville's genus Amasa.

Micropus lelcopterus, Say (Rep. II, p. 15 and subsequently)-Now referred to Burmeister's genus Blissus.

Antiocoris insidiosus, Say (Rep. II, p. 27 and subsequently)-Belongs to Fieber's genns Triphleps.

Reduvius Raptatorius Say (Rep. I, p. 114)-Belongs to Sinea, Amyot \& Serr., and is synonymous with diadema Fabr.

Harpactor cinctus Fabr. (Rep. I, p. 114 and subsequently)-Belongs to Stå's genus Milyas.

HOMOPTERA.

Cicada septemdecim (Rep. I, p. 18)-This orthography, used in the Reports, is grammatieally correet, bnt I find that Linnæus hinself wrote scptendecim (Systema Nature, Tom I, Pars II, 12th Ed. Stoekholm 1767). Fiteh used both forms of spelling, but Westrood, Harris and most other anthors follow Linnceus, and septendecim is, therefore, preferable. As to whether the 17 and 13 -year broods should be eonsidered specifically distinct, I am still of the opinion expressed in the First Report that the insects should not be looked mpon as distinct species, but that tredccim Riley should rather be considered a raee, or as Walsh (in a letter to Charles Darwin, which has kindly been shown me by Mr. G. H. Darwin) puts it, an incipient speeies, to which, for eonvenience, it is desirablo to give a distinctive name. Tluat it may be looked upon as a good species by oxcellent anthority, will be seen by Walsh's diseussion of the subject (American Entomologist II, p. 335) which I here qnote:

What candid entomologist, who has worked much upon any particular order, will not allow that there are certain genera where it is often or almost or quite impossible
to distinguish speeies by the mere comparism of cabinet specimens of the imago? Lew and Osten Sacken have said this of the gems Cecidomyim in Diptera; Osten Sacken of two other Dipterons genera, Sciara and Cerctopogon; Norton of the genus Nematus in Hymenoptera; and Dr. Lc Conte lately assured me that, althongh when he was a young man he thonglit himself able to diseriminate, in the closet, between the different species of Prachimns in Coleoptera, he now eonsidered it yuite impracticable to do so with any degree of certainty. And yet who doults the fact of the existence, in North America, of very numerous distinct species of Cecilomyia, of Sciura, of Ceratopogon, of Nematus, and of Drachimus.

Tpon the same principle I strongly incline to believe that the 17-sear form of the Periodical Cicada (C. septemdecim, Limn.) is a distinct species from the 13 -year form (C.tredecim, Riley) althongh it has heen impossible for me, on the closest examination of very numerons specimens, to detect any specific difterence between these two forms.* It is very true that the 13 -rear form is confined to the more sontherly regions of the Unitedstaics, while the 17 -year form is generally, hat not nimersally, peculiar to the Northern States; whence it has been, with some show of plausivility, inferrerl that the 13 -year form is nothing but the 17 -year form accelerated in its metamorphosis by the influence of a hot southern climate. But as these two forms interlock and overlap each other in varions localities, and as it frequently happens that particnlar broods of the two forms come ont in the same sear, we should certainly expect that, if the two forms belonged to the same species, they would oreasionally intercross, whence wonld arise an intermediate varicty having a periodic time of 14,15 or 16 years. As this does not appear to have taken place, but, on the contrars, there is a pretty sharp dividing line between the habits of the two forms, withont any intermediate grades of any consequence, I infer that the internal organization of the two forms must be distinct, althongh externally, when placed side ly side, they are catetly alike. Otherwise, what possible reason conld there be for onc and the same sireeies to lie muderground in the larva state for nearly 17 years in one connty, and in the nest adjoining enonty to lie underground in the larra state for scareely 13 years? I presnme that even the most bigoted believer in the old theory of species wonld allow that, if it ean once be proved to his satisfaetion that two appurently identical forms are always structurally distinct, whether in their external or in their internal organization, they must necessarily be distinct speeies.

On the other hand, I firmly believe that many perfectly distinct forms, which at one time passed current, or which even now pass current, as true species, are in reality mere dimorphons forms of one and the same species. We find a gool example of this in the dimorphous q Cymips, q. aciomatn, 0 . S., which has already been treated of at great length. We find another good example of the same thing in Cicadu Cassinii of ㅇ, Fisher, which is sufficiently distinct from the Periodical Cicada to have beeu classified as a distinct species, and yet never oceurs except in the same year and in the same locality as this last, and what is more extramerinary still, is founil not only along with the 17 year form (C. septemderim), but also along with the 13 -year form (C. tredecim).
Now, if Cassimii were a distinct species, and not, as I believe it to be, a mere dimorphous form of C. septemdecim and C. tredecim, the chances are more than a million millions to one against its always coinciding with the two other forms, not only as to the partienlar loeality but as to the particular year of its appeartuce.
I do not know that any one has heretofore attempted to set at rest, by actual proof, the rery general skepticism as to this inscet remaining so long mulerground, on the part of those persons who have given little attention to the subject. I have been able to trace the development from year to year of my tredecim brood XVIII in the vicinity of Saint Louis by digging up the larve each year from 1868 to 1876 , and noting the annual growth. They could always be found within from two to five feet of the surface upon the ronts of trees, and had by the 8 th year attained the first pupa stage, and I have no doubt but that, at this writing, the true pupe are nearing the surface of the ground to appear in myriads in the perfect state in May and June of this year.
The fungus affecting this Cicada has since been described by Mr. C. H. Peck as Massospora cicadina (31st Rep. N. Y. State Mus. Nat. Hist., pp. 44, 1079).
Eriosoma pyri, Fitch (Rep. I, p. 118) - After comparing specimens in Europe with our American insect, I have no donbt of the specific identity of the two, or of the root-inhabiting and twig-inhabiting forms. The insect should be known, therefore, as Schizoncura lanigera (Hausm.). See my remarks in American Entomologist, II, 359;

[^3]Rep. 3. p 95, and "Notes on Aphidide of the U. S." (IIayden's Bull. U. S. Geol. \& Geogr. Surv. of Terr., Vol. V, p. 3).
Aspidiotus Harrisil Walsh (Rep. I, p. 7) - This belongs to Costa's genus Diaspis, and is appareutly the species named ostreaformis by Curtis (Gardencr's Chronicle, 1843, p. 805).

DIPTERA.

Trupanea apivora Fitch (Rep. I, p. 163; II, 122) - This has been renamed Promachus Fitchii by Osten Sacken (Cat. of the described Diptera of N. A. 2nd Ed., 18i8, p. 234), the species proving different from Bastardii Løw, and Fitch's name being preoccupied.
Bee-fly Larva (Rep. IX, p. 96) - The undetermined larva here illustrated (Fig. 24) has since proved to be that of a Systcchus, a genus of Bombyliid flies. Forfurther details and determinations see the Second Report of the Commission (pp. 20\%-9).
Sarcophaga carnaria, L. (Rep. IX, p. 95) - The variety sarracenire of this species there mentioned is nor considered a good species, for reasons stated in Bulletin 3 of the Commission (pp. 39, 40, note).
Exorista leucanee, Kirkpatrick (Rcp. II, p. 50 and subscquently) - Referrcd to the genus Nemorea Desv. by Osten Sackeu (Catalogue, etc.. 1878, p. 150). The variety cecropice of this (Rep. IV, p. 10z) is quoted by him as a distinct species under Exorista, probably a mistake caused by my employing the wrong figure in the American Entomologist, Vol. II, p. 101, where that of E. flavicauda is used for leucania.

Lydella doryphore Riley (Rep. I, p. 111)-Now included in the genus Ecorista.

ORTHOPTERA.

(Ecantilus niveus, De Geer (Rep. I, p. 138, and V, p. 120)-This species is common in all parts of the country, and I have proved, by breeding, that its eggs are those described and figured as such in the 5th Report. I agree with Scudder in considering fasciatus De Geer but a dark and rather well marked variety of it. Its chirp is intermittent, rescmbling a shrill te-reat te-reat te-reat with a slight pause between each. The eggs and punctures figured on page 119 of the 5th Report (Fig. 47) as probably those of Orocharis saltator are, as I have since proved by breeding and by watching the process of oviposition, those of a large species of Ecanthus, hitherto, I believe, very generally confounded with niveus, and which is described below as C. latipennis N. Sp. While niveus punctures all kinds of soft stems and pithy twigs, latipennis seems to prefer the more slender parts of the Grapc-vine. The femate, when she has sufficiently proceeded in the act of ovipositing, is so intent that she can very well be watched at night by the aid of a "bull's-eye."

The jarrsare first used to slightly tear the outer bark. With the antennae stretched straight forward and the abdomen bent up so as to bring the ovipositor at right angles with the cane, she then commences drilling, working the abdomen convulsively up and down about twice each second. The eggs, as described iu the Report, are laid lengthwise in the pith, but always in two sets, one each side of the hole. The number varies according to the size of the canc, and the distance between the holes is also variable but usually less than in my figure. The hole is usually filled up with a white mucous secretion, though there is very little of it about the eggs. This secretion also doubtless serves to facilitate the drilling. The same female will lay over 200 eggs, and will sometimes puncture the same cane at intervals of $\frac{1}{8}$ inch for $1 \frac{1}{2}$ feet or more.
The shrill of latipennis is continuous and recalls the trilling of a high-pitched dogwhistle in the distance. The key varies, however, and is sometimes much less high and more musical than at others. The commingled shrill of this species recalls also the distant croaking of frogs in spring. The broad wings are thoroughly elevated during the act or evea beut forward, and the vibration is so rapid that there appeare
to be no motion．The species，in addition to these differences in stridnlation and hathits， may be distinguished from niceus by the following characters：

Ecanture latipenisis N．Sp．－White，the elytra of the of sometimes grayish and the posterior femora in one speeimen disenlored．Antemmimmaculate，with the basal joints and the front of head usually roseate．Tip of ovipositor black．Pronotum as in niveus．Hind wings of as long at the elytra or sometimes a tritfc longer；of 3 some－ what shorter than elytra．Elytra of iq irregularly reticnlate between the parallel obliqne veins，especially toward the base．Elytra of o when unfolded f as wide as long，the dorsal surface 14^{mm} to 16.5^{mm} long by $\boldsymbol{\gamma}^{\mathrm{mm}}$ to z^{mm} wide；the rasp 1.5^{mm} long and the teeth distinetly seen with a lens of low power．Ovipositor $6^{\text {man }}$ long：sub－ genital plate broadly exeavated．Claspers of of with their tips broad，but slightly broader at base than at tip，not deeply separated．
Weseribed from 15 子 \＆specimens from Missonri， 1 子 from Alabama，and 1 子 from South Texas．

The form of the subgenital plate，the immaculatc antemme with their roseate base，and the larger size serve to distinguish the species as well in the pupa as in the imago state．
E．latipennis is a larger insect than nireus nsnally is．The ovipositor measures $6^{\text {mam }}$ in length，whereas in nireus it rarely exceeds 5^{mm} and in only one specimen，a san－ guineous variety eaptured Jnly 10，187．，does it equal 6 mm ．The male elytra of nicens in only one specimen，captured September 19，1877，reach 13^{mmn} iu length ly 6^{mm} in width on the upper face，and the size is generally much less．In mireus the infolded male elytra are less than $\frac{2}{8}$ ，and usually only $\frac{1}{2}$ ，as wide as long，and the rasp is only 1^{mm} long，and the teeth are not so easily seen．The elytra of nitens female sometimes show an irregnlarity in the reticulation between the parallel oblique veins but never so great an irregularity as in latipennis，there being fewer cells．In only one speeimen of latipennis，a male taken on cotton at Columbns，Tex．，are there any black marks on the lower surface of the basal joints of the antenne，representing the lines or dots which are always present in nireus．But the two species are most sharply separated by the form of the subgenital plate of the female，which in niveus narrows rapidly towards the tip which has a minute angular notch，and by the form of the male elaspers，which in nirens have theirtips very slender and parallel，being deeply parted，and then retreat－ ing rapidly from one another on each side．

Besides nivens there are recognized from North America three other species of Ecan－ thus，one of which，californica Sauss．，＊recorded only from California，is described as having the posterior wings abortive．t The other two species，nigricornis Walk． from Illinois（deseription quoted in the American Entomologist，Vol．II，p．207；1870） and varicornis Walk．from Mexico，both described only in the female sex and dif－ fering from niceus in nothing but the slightly longer lind wings and the slightly greater size of the insect，and in varicornis having a slightly longer prothorax，have been retained as distinct species by Saussure．But niveus，as may be seen in a series of specimens，varies in these characters indefinitely，just as other species of crickets are admitted to vary；so we may consider Walker＇s speeies to be but varieties of niveus． They cannot be referred to latipennis，for in this species the wings rarely，and then but slightly，exceed the elytra．

One other North Ameriean species，bipunctatus DeG．，has been referred to Ecanthus． It belongs，however，to the genus Yabea and should be known as Xabea bipunctata（Derx．）．

As the female of Xabea \ddagger has not hitherto been deseribed and Sanssure did not reeognize the genus as distinct from Ecanthus，it may be well to give here the characters drawn from both sexes to show how very clearly the two genera differ．The type of the ge－ uus is from Sumatra，and Walker，being macquainted with our species，an Sanssure，d having only imperfect specimens，both failed to recognize the existcnce of the genus in North Ameriea．

[^4]Xabea Walk.-First joint of antenale armed with a stout, blunt tooth in front. Female elytra irregularly reticulated, the oblique longitudinal veins not being eonspicnous; male elytra with the mediastinal vein strongly arcuated; no humeral angle. Wings twice as long as the elytra. Cerci only halt as long as the abdomen, sinnons. Outer valves of the ovipositor ending in a single outwardly directed tooth which is preceded on the outside by a longitudinal series of three teeth; the inner ralves compressed, ending in three teeth of which the middle one is much the longest. Posterior tibia with neither spurs nor serrations and haviug only 4 apical spurs, 2 within and 2 without; the first joint of posterior tarsi unarmed, the tarsi clearly but 3 -jointed, the second joint short as in the other legs; tarsal elaws with the inner tooth acute.

Orocharis salfatol: Uhler (Rep. V, p. 119). -The eggs figured and described on page 11^{\prime}) as probably those of this insect are, as above stated, those of (Eanthus latipennis. I have, however, frequently oltained the eggs of the Orocharis since. In December, 187\%, I watehed a female ovipositing in the end of a dead and rather soft twig of the Soft-maple at Kirkwood, Mo. The twig lad been pruned and the bark was somewhat gnawed by the cricket and the eggs thrust in irregularly from the end and from the sides. Both wood and pith were crammed with egres, but all longitudinally inserted. The favorite nidus of the species is, however, the soft and somewhat eorky, rough bark of the trunk and older branches of the American elm, the egges being thrust in singly or in small batehes, either longitudinally with, or very slightly obliquing from, the axis of trunk or branch. The female is very intent in the act, working her abdomen deliberately from side to side during the perforation. The ovipositor is held more obliquely than in Ccanthus.

The egg is amber-colored and very slender and clongate, the tip rather pointed and very faintly opaque with the surface but slightly granulate. It has scarcely any eurve and raries from 3.5^{mm} to 4^{mm} in length and from 0.4^{mm} to 0.5^{mm} in diameter at middle.
The stridulation of this crieket is a rather soft and musieal piping of not quite half a second's duration, with from 4 to 6 trills, but so rapid that they are lost in the distance. The key is very high, but varies in different individnals and according to moisture and temperature. It most resembles the vibrating tonch of the finger on the rim of an ordinary tumbler when three-fourths filled with water-repeated at intervals of from? to 4 per second, and it may be very well likened to the piping of a yonng chick and of some tree frogs. As the species is very common in the Southwest its ehirp is everywhere heard and is so distinetive that when once studied it is never lost amid the louder racket of the katydids and other night ehoristers. It is frequently heard during the day time in cloudy or damp weather, and I have heard it at Saint Louis the first days of November after a slight frost. The elytra in stridulating are raised less than in Ecauthus and are depressed at intervals.

The courting of the sexes is amusing. They face each other and play with their antenne for the best part of an hour or more than an hour. The female is, otherwise, pretty quiet, but the male continually mouths the twig or the bark npon whieh the courting is being done, and plays his palpi at a great rate, very stealthily approaching nearer to his mate meanwhile. At last the antennal feneing ceases and those of the female bend baek and then the male approaches until their heads touch. He then deliberately turns round, elevates the elytra and slips his abdomen under the female, who virtually mounts and assists him, his elytra overshadowing her head.

The eggs of this inseet, as also those of Ccanthus lutipennis, are devoured by a parasitie larva of similar form and size, and which I have not yet reared to the perfect state.
Orchelimum glaberimum, Barm. (Rep. V, p. 123)—The egg-punetures illustrated at Fig. 56 are, as there correctly snpposed, those of this species, as I have since proved by watching the act of oviposition and by rearing from the eggs. The insect is rery fond of using the tops of eorn-stalks for the same purpose.

NEUROPTERA.

Corybale's cornctu's, L. (Rep. V', p. 141; IX, p. 125)-For additional facts relating. to the early larval stages, see my notes on the "Larval Characteristies of Corydalus and Chauliodes and on the development of Corydalus cornutus (Proc. Am. Ass. Adr. Sc., 1875).

MITES.

Trombidicm sericeum Say (Rep. VII, p, 175 and subsequently)-For the natural history of this species and the specific identity with it of the larval form known as Astoma gryllaria LcBaron, and for further facts respecting the other mites mentioned in the Report, see my remarks in the Transactions of the Academy of Science of Saint Louis, (Vol. III, p. celxvii, October, 157\%) in the American A'turalist for March, 1078, and in the First Report of the Commission (p. 306 ff .).

DESCRIPTIONS OF NEW SPECIES AND YARIETIES.

Some systematists have questioned whether descriptions of species in Agricultural Reports should be recognized. While my own views on this subject are pretty freely expressed on page 56 of $m y$ Third Missouri Report and elsewhere, the publication of this Bulletin affords a good opportunity to bring the descriptions that are scattered through the nine rolumes together, with such notes on synonymy as present knowledge suggests, and such corrections as are given in the Errata. In the earlier reports the measurements were expressed in inches and hundredths of an inch, while in the later volumes the metric system was adopted as most convenient and accurate, and the measurements which follow have all been reduced to this standard. All changes of this character or other changes from the original are included in brackets, while the additional notes are in Long Primer type.

HYMENOPTERA.

Porizon conotracheli, N. Sp.-Head pitchy-black, opaque, the ocelli triangularly placed and close together; cyes oyal, polished, and black; face covered with a sil-very-white pubescence ; labrum rufous, with yellowish hairs; mandibles and palpi, pale yellowish-brown; antenne inserted in depressions between the eyes, reaching to metathorax when turned baek, filiform, 24-jointed; black with basal joints 6 - 1 becoming more and more rufons, the bulbus always distinetly rufous; bulbus rather longer and t wice as thick as joint 3 ; joint 2 about one-third as long. Thorax pitehyblack, opaquc, the sides slightly pubescent with whitish hairs, the mesothorax rounded and bulging antcriorly, the scutellum slightly excavated and sharply defined by a carina each side; metathorax with the elevated lines well defined and running parallel and close together from seutelnm to about one-fourth their length, then snddenly diverging and eaeh forking about the middle. Abdomen glabrous, polished, very slender at base, gradually broader and much compressed from the sides at the apex which is truncated; peduncle uniform in diameter and as long as joints 2 and 3 together; joints 2-5 subequal in length; color rufous with the pednuele wholly, dorsnm of joint 2, a lateral shade on joint 3, and more or less of the two apical joints superiorly, especially at their anterior edges, black; venter more yellowish : ovipositor abont as long as abdomen, porrect then in nsc, eurved npwards when at rest, rufous, with the sheaths longer and black. Legs, ineluding troehanters and coxe miformly pale yel-lowish-brown with the tips of tarsi dusky. Wings, subhyaline and iridescent, with veins and stigma dark brown, the stigma quite large, and the two discoidal cells subequal and, as nsual in this genns, joining end to end, but with the upper veins which separate them from the radial cell, slightly clbowed instead of being straight, thus giving the radial cell a quadrangular rather than a triangular appearance. of differs from q only in lis somewhat smaller size and marmed abdomen. Expanse $¢ 0.32$ inch $[=8 \mathrm{~mm}]$, length of body, cxclnsive of ovipositor, $0.22\left[=5.5^{\mathrm{mm}}\right]$; expanse 子 $0.28[=$ $\left.7^{\mathrm{mm}}\right]$, length $0.18\left[=4.5^{\mathrm{mm}}\right]$.

Described from 3 오 ㅇ, 1 of bred May 26th- 28 th, 1870, from cocoons received from Dr.
I. P. Trimble, of New Jersey, and 1 is sulbequently received from the same gentlemanall obtained from larve of Conotrachelus nenuphar.
As I an informed by Mr. E. T. Cresson, of Pliladelphia, who pays especial attention to the classification of the Ichneumonide, it might more properly be referred to Holmgren's genus Thersilochus, which differs from I'orizon in the greater distance between the antenne at hase, and in the renation of the wing.-[Third Rept., p. 28, Fig. 9.

Linneria lophyti, N. Sp. - q, lengtl $0.30-0.35$ inch [$7.5-8.7^{\mathrm{mm}}$]. Head and thorax black with silvery white pile. Antemne piceous, more than lialf as long as body; but slightly paler toward tip; hulbus either yellowish or rufous. Ocelli cither rufous or black. Mandibles, palpi, front and middle coxie trochanters and tibiee. pale yellow. Tegula almost white. Aldomen, with faint pile, rufous, the petiole and sides of next joint usually blackish. Hind legs rufons, the base of tibite and of tarsi paler.
ot somewhat smaller, and with more hack on the abdomen.
Four δ 's, 12 ¢'s bred from larve of Lophyrus Abbotii.-[Ninth Rept., p. 32.
Hemiteles (?) Cressonif, [N. Sp.]-3-Leugth 0.25 [Gmm]. Black, opaque, head transrersely-subouadrate; face clothed with pale glittering pubescence; spot on mandibles, palpi, seape of antenner in front and the tegule, white: eseslarge, ovate ; antenure longer than head and thorax, slemeler, black; thorax closely and minutely punctured; mesothorax with a deeply impressed line on each side anteriorly; seutellum couvex, closely pmoctured, deeply excavated at base; metathorax coarsely seulptured, truncate and excarated behind, the elerated lines sharply defined. forming an irregularly shaped central area, aud a triangular one on each side of it, the outcr posterior angle of which is promincut and subacute; wings lyaline, iridescent, nervures blackish, stigna large, areolet incomplete, the outer nervure wanting; legs pale honeyyellow, coxce paler, tips of posterior femora, and their tibie and tarsi entirely blackish; abdomen elongate ovate, flattened, petiolated, the first segment flat, gradually dilated postcriorly, somewhat shining, and indistinctly longitudinally aciculate; the two following segments opaque, indistinctly scnlptured ; remaining segments smooth and shining.-[First Rept., p. 177. Figured at Pl. II, Fig. 7.

Hemiteles (?) thyridopterigis, N. Sp.-q Length 0.36 [inch $=9 \mathrm{~mm}$]; expanse 0.50 [inch $=12.5{ }^{\mathrm{mmm}}$]. Ferruginous, opaque. Head transverse, rather broader than thorax, the front much depressed; face prominent centrally beneath antenne, closely punctured, thinly clothed with pale pubescence ; clypeus and cheeks shining; tips of mandibles black; antemæ, long, slender, filiform, ferruginous, blackish at tips; thorax rugose; scutellum prominent, with sharp lateral margins; metathorax prominent, guadrate, abrupt laterally and posteriorly, finely reticulated and pubescent, the upper posterior angles produced on each side into a long, divergent, flattened, subacute spine; disk with two longitudinal carine, from which diverges a central transverse carina; tegul:e piceous; wings hỵaline, subiridesecnt ; a narrow, dark fuliginous band crosses the anterior pair a little before the middle, and a broad band of same color between middle and apex, this band having a median transverse hyaline streak; areolet wanting, second recurrent nervure straight, slightly obliquie; apex of posterior wing fuscous; legs long and slender, ferruginous, more or less varied with fuscous; pos. terior coxa, tips of their femora, and their tibie and tarsi, fuscous; hase of four posterior tibie more or less whitish, forming a rather broad anmulus on posterior pair; abdomen petiolated, subconvex, densely and finely sculptured, blackish, baeal segment tinged with reddish, the second and third segments distiuctly margined at tip with whitish; apical segments smooth and shining, thinly pubescent; ovipositor half as long as abdomen, sheaths blackish.
d.-Not at all like the ρ. Length 0.33 [inch $=8 \mathrm{~mm}$], expanse $0.44[$ inch $=11 \mathrm{~mm}$]. Long, sender, black, polished, without distinct punctures, thinly clothed with white pubescence ; palpi white; antenntc long, slender; scape reddish; mesothorax gibbous, with two deeply impressed longitudinal lines: metathorax with well-defined elerated
lines, forming several irregular areas; sides rugulose, apex without spines or tubercles; tegule white; wings whitish-hyaline, subiridescent, the nervures and stigma white, sublyaline, neuration as in of legs long, slender, pale honer-yellow; coxa, posterior trochanters, apex of their femora, and their tibir and tarsi, blackish; base of posterior tibiar with a white annulus; abdomen long, slender, flattened, petiolated, smooth aud polished, the apical margin of second segment being narrowly whitish.

Described from four q and one of specimens lired from the same [Thyridopteryx] cocoon.-[First Rept.p. 150. Figured at Pl. II, Figs. 11, 12.

The species is quite common in Washington, D. C., and is often attacked by a secondary Chalcid parasite.
 black. Antemnie black, about as loug as body; palpi whitish. Thorax minntcly punctured. Abdomen with the two or three basal joints emarginate and rngose, the terminal joints smooth and polished. Legs dusky; front and middle femora yellowish, hind femora black; frout and middle tibie yellowish, hind tibiæ with terminal half dnsky, but the spur pale; front and middle tarsi yellowish tipped with dusky, hind tarsi dusky abore, paler below. Wings liyaline, iridescent, the nervures and stigma black or dark-brown, the radial nervule, the cnbital nervnles and the exterior nervule of the discoidal cell, sub-obsolete.
Described from 5 ㅇ, 1 §, bred from larva of Limenitis disippus.-[Third Rept., pp. 158, 159.

The specimens referred to in connection with this description as bred from Gelechia gallasolidaginis prove to belong to a distinct species. Both species belong to the genus A punteles Först. as at present accepterl. See my "Notes on N. A. Microgasters" (Trans. Ac. Sc. St. Louis, IV, Author's separata, p. 13.)
Microgaster gelechie.-Ledgth $0.20\left[=5^{\text {min }}\right]$ of 9 . - Black, clothed with a short, thin, glittering, whitish pubescence, most dense on the face, which latter is closely punctured ; occiput and cheeks shining; mandibles rufopiceous; palpi whitish; eyes pubescent ; antenne as long as the body in δ, shorter in 9 , 18 -jointed; thorax shining, feebly punctured, mesothorax closely and more strongly punctured, with a deeply impressed longitudinal line on each side orer base of wings; sentellum smooth and polished, the lateral groore broad, deep, arched and crenulated; metathorax opaque, densely rugose, witl a sharp, central, longitudinal carina, and a smooth, flat, transverse carina at base; tegule testaceous, wings hyaline, iridescent, apex smoky, nerrures blackish, arenlet complete, subtriangular, radial nerrure indistinct; legs pale honey-yllow, coxie blackish, pale at tips, middle pair in $¢$ concolorons with legs ; abdomen with the two basal segiments densely rugose and opaque, the remainder smooth and shining; venter more or less varied with pale testaceous.-[First Rept., p. $1 / 8$.

This is a true Microgister.
Perilitus indagator, N. Sp-Imago-o , Head almost glabrons, transverse, deep honey-yellow, the trophi pale, except the tips of jaws, which are dusky ; ocelli tonching each other, black; eyes black, very large, occupying nearly the whole side of face, and with a few very short hairs; antenne with about 24 joints, pale fuscons; reaching, when turnel back, to about the middle of ablomen. Thorax honeyyellow beneath and vers slightly pubescent; rery finely puncturcel and slightly pubescent above; prothorax honey-yellow and prominently conves; mesothorax with lateral and posterior sutures black; metathorax black. Abdomen with the pedicel black and slightly punctured; depressed, narrow at base, widening behind, slightly pubescent above: the other joints glabrons, polished, deep honey-rellow, the second joint largest and as long as all the subsequent ones together; oripositor extending abont the length of the abdomen begond its tip, rufous with the sheaths black. Legs
pale honey-cellow, the tarsi, especially at tips, slightly dusky, the hind femora and tibise a little dusky towards tips, and a narrow rufous ring at base of former. Wings hyaline, iridescent ; veins brown ; stigma honey-yellow, with an opaque hrown cloud; two cubital cells, the outer small, sub-quadrate; the radial large ; ouc discoidal, long and narrow. Length, exclusive of ovipositor, 0.18 inch $[=4.5 \mathrm{~mm}]$.
Described from 1 of bred from Acrobasis juglandis, LeB.-[Fourth Rept.,]. 43.
Spathics trifasciatus, N. Sp. - $\%$. Average length, 0.18 inch $[=4.5 \mathrm{~mm}]$. Color, light-brown. Head pubescent, palpi long and pale; eyes black; ocelli black, contiguous ; antenne smooth, pale, and reaching to second abdominal joint. Thorax with sutures dark-brown; legs more or less dusky, the tarsi (except at tip) an annulus at base of tibie, and the trochanters, pale; wings fuliginous, with a white fascia at base, at tip and across outer middle of frout wing, including the inner half of stigma, the outer half of which is dark-lorown; middle fascia most clearly defined. Abdomen slightly pubescent at sides and tip; first joint pale, petiolate, and with short and longitudinal aciculations above ; second joint pale above, the others more or less brown; ovipositor pale, dusky at tip, and long as abdomen.

One bred specimen.
б-Differs in being much darker colored, the head, thorax and femora being brown, and the metathorax and base of first abdominal joint black.

One bred specimen.-[Fifth Rept., p. 106.
Bracon charus, N. sp. - ? Length of body 0.35 inch $[=8.7 \mathrm{~mm}$]; of ovipositor 0.40 inch $\left[=10^{\mathrm{nmm}}\right]$; expanse of wing 0.65 inch $\left[=16^{\mathrm{mm}}\right]$. Colors black and decp rufous. Head, thorax, lege and antenne polished black, the legs and sides of head and thorax with a fine grayish pubescence ; trophi also black. Abdomen uniformly deep rufous. Terebra of ovipositor pale yellow, the sheaths black and very faintly pubescent. Wings deep fuliginous with a faint zig-zag, clear line across the middle from the stigma.

Described from 7 o's, all bred from Chrysobothris femorata.-[Seventh Rept., p. 75. Fig. 13.

Bracon scolytivorus, Cress.- q-Black, shining, metathorax aud base of abdomen pubescent ; face, anterior orbits, lower half of cheeks, clypeus, mandibles, except tips, palpi, tegulie, legs, iucluding coxat, and abdomen, honey-yellow, the latter darker; posterior coxa sometimes dusky; anteunte at base beneath, dull testaceous; wings fuliginous, apical half paler, iridescent; abdomen shining, first segment whitish laterally, the base and dise sometimes dusky; base of second segment with a large subtriangular flattened space inclosed by a dcep groove, the posterior side of which is generally blackish; ovipositor longer than abdomen ; sheaths black; length, $.15-.17$ inch [$=$ $3 \frac{3}{4}-4^{\frac{1}{2} \mathrm{~mm}}$].
d-More pubescent; posterior coxie blackish, also the femora above, especially the posterior pair; posterior tibix dusky ; abdomen black, polished ; apex of first, basal half of second, and sides of apical segments more or less honey-yellow; sides of basal segment whitish; wings paler; abdomen narrower and rather more convex; length, .16 inch [$=4^{\mathrm{mmm}}$].

Three of, three of specimens.-[Mr. E. T. Cresson, in Fifth Rept., p. 106.
Sigalphus curculionis, Fitch-Imago.-Head black, sub-polished, and sparsely covered on the face with short whitish hairs; ocelli touching each other; labrum and jaws brown ; palpi pale yellow ; antenne (Fig. 7, c) 27 -jointed, filiform, reaching, when turned back, to middle joint of abdomen and beyond, the buibus and small second joint rufous and glabrous, the rest black or dark brown, thongh 3-10 in many specimens are more or less tinged with rufous; 3-14 very gradually diminisling in size ; $14-27$ subequal. Thorax black, polished, the metathorax distinctly and broadly punctate, and the rest more or less distinctly punctate or ringose, with the sides sparsely pubescent. Abdomen pitchy-black, flattened, the dorsum convex, the venter concave, and the sides narrow-edged and slightly carinated; the three joints distinctly separated and of about equal length; the first joint having two dorsal longitudinal carina down the
middle; all densely marked with very fine longitudinally impressed lines, and sparsely pubescent; (Dr. Fitch in his description published in the Country Gentleman, under date of September, 1859, states that these liues leare "a smooth stripe along the middle of its second segment and a large smooth space on the base of the third;" which is true of a few specimens, but not of the majority, in which the impressed lines generally cover the whole abdomen.) Ovipositor longer than abolomen, but when stretched in a line with it, projecting backwards about the same length beyond; rufous, with the sheaths black. Legs pale rufous, with the npper part of hind tibiee and tarsi, and sometimes the hind femora, dinsky. Fings subhyaline and iridescent, the veins pale rufons, and the stigma black. Length $\circ, 0.15-0.15$ inch $\left[=3.7-4^{\mathrm{mm}}\right]$, expanse $0.30[=$ 7.5 mm]; differs only in his somewhat sinaller size and in lacking the ovipositor. In many specimens the mesothorax and the ejes are more or less distinctly rufous.
Described from 50 오 ㅇ, $10 \delta^{\circ} \delta^{\circ}$, bred Jnne 23d-July 29th, 1-70, from larve of Conotrachelus nemphar, and 2 it ob obtained from Dr. Fitch.
Larra (Fig. ?, a)—White, with translucent yellowish mottlings.
Pupa (Fig. B, c ㅇ) 0.17 inch $\left[=\frac{1}{\frac{1}{2} m m}\right]$ long; whitish, the members all distinct, the antenne touching hind tarsi, the oripositor curved round behind, reaching and touching with its tip the third abdominal joint, which afterwards forms the apical joint of imago; fire ventral joints, which in the imago become much absorbed and hidden, being strongly developed.

Cocoon (Fig. c, b)-Composed of one layer of closely woven yellowish silk.
Variety rufus-Head, thoras, and most of the first abdominal joint entirely ufons, with the middle and hind tibie dusky, and the ovipositor three times as long as abdomen and projecting more than twice the length of the same beyond its tip.

Described from three 여 아 bred proniscuously with the others. This variety is slightly larger and differs so remarkably from the normal form that, were it not for the absolnte correspondence in all the sculptnring of the thorax and body, and in the venation of the wings, it might be considered distinct. The greater length of the ovipositor is very characteristic, and accompanies the other variation in all three of the specinens.-[Third Rept., p. 27. Fig. 7.

Eurytoma Bolteri, N. Sp. - of Length 0.18 inch $[=4.5 \mathrm{~mm}]$. Antenue black, not much longer than the face, perceptibly thicker towards the end, aud apparently 10 jointed, thongh the three terminal joints are almost alwars contluent. Dimensions and appearance of joints, represented in the annexed Fignre 97, u. Head and thorax roughpunctured and finely bearded with short, stiff gray hairs. Abdomen abont as long as thorax, searcely so broad, viewed from above, bnt wider viewed laterally; highly polished, smooth and black, the three terminal segments with minute stiff gray hairs along the sutures; visibly divided into seven s?gments, the four anterior ones of abont equal length, the two following shorter, and the terminal one produced into a point. Legs fulrous with the coxe, [trochanters], thighs and more or less of the shanks black-ish-brown. Wings perfectly transparent, glossy, colorless, and with the nerves very faint.
of Measnres but 0.14 inch [$=3.5 \mathrm{~mm}$], and differs in the antennæ, being twice as long as the face, in their narrowing towards the tip and in being furnished with whorls of long hairs. The number of joints are not readily made out, and I have consequently presented at Figure 97, b, a magnified figure. His body is but half as wide and half a_{S} long as the thorax riewed from above, and not quite as broad as the thorax, riewed laterally; it it also lacks the produced point of the q. His wings are also cnt off more squarely and more distinctly nerved.-[First Rept., p. 187. Pl. II, Fig. 9.

For further descriptive details see Walsh's posthumous paper on the Eurytomides (Am. Ent. II, p. 293-9), where the insect is looked upon as a variets of Eurytoma diastrophi.
[Trichogramala minuta, N. Sp.] * * * It comes nearest the genus Trichogramma, Westis., and may be prorisionally called Trichogramma (?) minnta. It differs
from that genns and from all other Chalcillidan genera with which I aun acquainted, in the antennee being but 5 -jointed (scape, plus 4 joints), the scape stout and as long, or longer, than joints $\bullet 2,3$, and 4 together' ; joints 3 and 4 small and together as long as joint $2 ; 5$ very stout, fusiform, and as long as 2,3 , and 4 together. The legs have the trochanters stout and long, the tibix not quite so long nor so stont as the femora, and with a long tooth ; the tarsi are 3 -jointed, with the joints of equal length and with the claws and pulvilli sub-obsolete. The abdomen is apparently 6 -jointed, the basal joint wide, the Bud narrower, $2-5$ increasing in width till 5 is as wide as 1 . The ovipositor of q extends a little beyond the apex, and starts firom the anterior edge of the 5 th joint.-[Third Rept., p. 158. Fig. 72.

The species was provisionally referred to Trichogramma, and I subsequently proposed for it the generic name Pentarthron (Record of Am. Ent. 1871, p. S). Pentharthum has, however, been used by Wrollaston in beetles, and until allied genera are better characterized than at present, the old generic name may be retained.

COLEOPTERA.

Brechus fabee N. Sp. (Fig. 19,)-General color tawny-gray with more or less dull yellowish. Body black tinged with brown and with dull sellowish pubescence, the pygidium and sides of abdomen almost always brownish. Head dull yellowish-gray with the jaws dark brown and palpi black; antenne not deeply serrate in \circ, more so in 3 ; dark brown or black with usually 5 , sometimes only 4 , sometimes 4 and part of 5 basal joints, and with the terminal joint, more or less distinctly rufous, or testaceous, the color being so slight in some specimens as scarcely to contrast at all with the darker joints. Thorax narrowed before, immaculate, but with the pubescence almost always exhibiting a single pale medio-dorsal line, sometimes three dorsal lines, more rarely a transverse line in addition, and still more rarely (two specimens) forming a large dark, almost black patch each "side. learing a median stripe and the extreme borders pale and thus approaching closely to erythrocerus Dej. ; base with the edges almost angulated ; ceutral lobe almost truncate and with a short longitudinal deeply impressed median line; no lateral notch; scutel concolorons and quadrate with the hind legs more or lest notched. Elytra with the interstitial lines having a slight appearance of alternating transersely with dull yellowish and dusky; so slight however that in most of the specimens it can hardly be traced: the dark shadings form a spot on each shoulder and three transverse bands tolerably distinct in some, almost obsolete in others, the intermediate row being the most persistent and conspicnous: between these dark transverse rows the interstices are alternately more or less pale, especially on the middle of the 3rd interstitial lines. Legs corered with grayish pubes: cence, and with the tibie and tarsi, especially of first and second pair, redlish-brown; the hind thighs usually somewhat darker, becoming black below and inside, and with a tolerably long black spine followed by two very minute ones. Length 0.09-0.14 inch $\left[=2 \frac{1}{3}-3.5^{\mathrm{mm}}\right]$. Described from 40 specimens all bred from different kinds of beans. Hundreds of others examined.
This insect has been for se veral years ticketed in some of the Eastern collections by the name of B. fabce, or else, what is trorse, the corruption of it, fabi. The former name has been disseminated by my friend F. G. Sanborn of Boston, Massachnsetts, who says that he received the weeril thus named, together with beans attacked by it, in the year 1332 from Rhode Islanl. The name was credited to Fabricius, but I can tind no notice in any of the works I possess of auy European Bruchus fabce, and several of my Eastern corresponlents who have access to large libraries have been nuable to find any description or allusion to a species by that name. Dr. LeConte has given it the MS name of raricornis but as his description will not appear perhaps for years to come aud as no comprehensive description has yet been published, I have deemed it adris-
able to dispel in a measure the confusion that surrounds the nomenclature of the species. There is need of a description of so injurious an insect, and as fabe is not preoccupied I adopt the name because it is entirely appropriate and because it is more easily rendered into terse popular language than varicornis.

It resembles most closely of any other species which I have seen, the B. erythrocerus, Dej., which, however, is smaller, and differs in having a narrower thorax which has light sides and a dak, broad dorsal stripe divided down the middle by a pale narrow line: erythrocerus is further distinguished by the antemme being entircly testaceous and the hind thighs more swollen.
From obsoletus Say, fabce differs materially : obsoletus is a smaller species, dark gray, with the antenne all dark, the pygidium not rufous, the thoras with a perceptibly darker dorsal shade so that the sides appear more cinereous, a white scntel, and each interstitial line of the elytra with a slight appearance of alternating whitish and dusk along its whole length; for though there is nothing in Say's language to indicate whether it is the interstitial lines that alternate transversely, whitish and dusky, or each line that so alternates longitudinally, I find from an examination of a specimen in the Walsh collection, that the latter is the case, and so much so that the insect almost appears speckled. The two species differ both in size and color, thongh, as Say's description is short and imperfect it is not surprising that fabce should have been referred to it.

From the European bean-feeding Br. flavimanus (which is apparently either a clerical error for, or a synonym of Br . rufimanus, Schenh.) as described by Curtis, it differs notably; as it does likewise from their Br. serratus, Ill., which also attacks beans.

Dr. LeContc, according to Mr. Rathron, was inclined to consider this insect the obsoletus of Say, from the fact that in specimens which the latter gentleman sent him, the autenne were not varied as in his MS. varicornis, but uniformly black. A few specimens which Mr. Rathvon sent me nearly two years ago, taken from the same lot as were those which he forwarded to Dr. LeConte, were singularly enough, all decapitated but two; and these two showed the varied antenne. These specimens had all been kept in alcohol, and I am greatly inclined to believe that the nniformly dark appearance of the antenne that was noticed by LeConte was the efficet of the alcohol on those which naturally had the rufous joints but faintly indicated. At all events, though Mr. Rathvon tells me that he found a small proportion of beetles with dark antenne, after examining, at my suggestion, over two hundred specimens that had thus been kept in alcohol; yet from orer one hundred specimens which he had the kindness to send me, I only find (after thoroughly drying them) three with the terminal joint really as dark as the subterminal, and not a single one in which the rufons basal joints cannot be more or less distinctly traced.-[Third Rept., p. 5:-55. Fig. 19.

Since the abore was written, Dr. Horn has given us a revision of the Bruchide of the United States (Trans. Am. Eut. Soc., Vol. IV, 1S73), in which he makes fabu a synonym of obsoletus Say, expresses regret that another synonym must be added and states that the obsolctus which I referred to is the transcersus Say (=hibisci Oliv.). This criticism is not descrred, and while the decision of one who has done such excellent work in Coleoptera as Dr. Horn has will be generally accepted as final, yet no one can compare his redescription of obsoletus with Say's description and not feel that the two apply to different insects. Faba is nsually one-third larger, tawny-gray above with vari-colored antennæ, concolorous scutel, emarginate behind, and rufous legs and abrlomen; obsoletus, on the contrary, according to Say, is blackish-cinereous, the thorax cinereous each side, with a whitish scutel and with the abdomen and legs not differing in color from the rest of the body. Fububreeds in beans; obsoletus in the seeds
of Astrugulus. Indeed one would be far more justified in considering B. alboscutellatus Horn a s.rnonym of obsoletus Siay than in considering fabce a synonym of it, and when the Bruchus from Astragalus in the Eastern States is bred, I fully expect Dr. IIorn to change his mind. Nor is the assumption justifiable that the obsoletus referred to by me, a.d destroyed in the Walsh collection, is hibisci Oliv. It was far more like alboscutellatus as far as I remember, and there is not a character about this species which does not accord with Says description of obsoletus except that the scitel is described as rounden, while that of obsoletus is described by Say as quadrate. I am of opinion that too much stress has been laid on this difference by Dr. Horn, as, when the pubescence is separated behind, the scutel appears quadrate, whereas in fubce it appears bifil. The scutel of clloscutellatus when demuled is quadrate, but it is doubtless the clothed appearance which Sas described. Sas, as appears from his text, had abundant material, and it is assuming too much to suppose that he could orerlook the striking differences in size and coloration of fabre, as above indicated.
The specific name fubce was used by Brullé for Bruchus pisorum Linn.
Madaru's vitis, N. Sp.-Length, exclusive of rostram 0.10 [inch=3.5mm. Color uniformly rufors, without maculations, the eyes alone being darker. Highly polished; rostrum arcuated, stout and about as long as thorax ; thorax and body with extremely minute and distant punctures, anterior margin of thorax abruptly narrowed, especially laterally, into a collar; elytra slightly undulate. with 4 distinct elevations, one on the extreme onter margin close to the thorax, and one on the middle of each, near the extremity.-[First Rept., p. 132. Fig. 74.

For further details as to the synongmy of this insect, see American Entomologist I, p. 105. Dr. LeConte's description of Baridius sesostris was published abont three months earlier than my own and he subsequently (Proc. Amer. Phil. Soc., Vol. XV, 18ie, p. 299) erected the gemms Ampeloglypter for this and two other species, so that Mularus vitis=Ampeloglypter sesostris Lec.
Analcis fragari.e, N. Sp.-Imago, (Fig. 14. b, c)-Color deep, chestnut-brown, subpolished, the elytra somerrhat lighter. Head and rostrum dark, finely and densely punctate and with short fulcous hairs, longest at tip of rostrum; anteune rather lighter towards base, 10 -jointed, the scape much thickened at apex, join 2 lougest and robust, 3 moderately loug, $4-7$ short, $8-10$ comnate aud forming a stout clul. Thorax dark, eclindrical, slightly swollen across the middle and mitormly covered with large thimble-like punctures, and with a few short coarse fulvous hairs, unusually arranged in three more or less distinct longitudinal lines; pectoral groove ending between front legs. Abdomen with small remote punctures and hairs which are denser towards apex. Legs of erqual stoutness, and with slallow dilated punctures and uniform very short hairs. Elytra more yellowish-brown, dilated at the lower sides anteriorly, and with about 9 deeply-punctured strie, the strise themselves sometimes obsolete : more or less covered with coarse and short pale yellow hairs which form by their greater density, three more or less conspicnous transserse bands, the first of which is at base: between the second and third band, in the middle of the elytron. is a smooth dark-brown or black spot, with a less distinct spot of the same color below the third, and a still less distinct one above the second hand. Leustlı 0.16 iuch [$=4^{\mathrm{mm}}$].

Described from four specinens bred from strawberr-boring larve. The black spots
on the elytra are quite distinct and eonspicnons on two specimens, less so on one, and entirely obsolete on the other.

Larva, (Fig. 14 a)-White with back arched Lamellicorn-fashion. Head gamboges yellow, glabrous, with some faint transverse striations abore month; mandibles rnfontipped with black; labrnm emarginate, and with palpi, pale. A faint narrow dorsal vasenler linc. Legs replaeed by fleshy tubercles. Length 0.20 inch $\left[=5^{\text {mimm }}\right]$ when stretched out.-[Third Rept., p. 44. Fig. 14.

Say's generic name Tylodermu having priority over Schionherr's Analcis, the name of this insect becomes Tyloderma fragaria.

LEPIDOPTERA.

Egeria rubi, N. Sp.—Imayn.-Expanse, \quad, 1.00 [inch= $25^{\text {mm }}$]; $9,1.25$ inch [$=31^{\mathrm{mm}}$]. Front wings transparent, with a broad costal border extending half the width of wing at base, a narrow discal spot, and more or less of the tip dull-ferruginous; the inner border, the inner longitudinal vein, the internediate spaee toward posterior angle, and sometimes its whole length, of the same color; veins brownish within and black withont the diseal spot. Hind wings perfectly transparent, or rarely with a few sparse ferruginons scales; the transverse discal vein pale, the others pale at base, but blaek toward extremities; costa narrowly goldeu-yellow, becoming darker toward apex. Fringes dark-brown, those of hind wings appearing darkest by virtue of a dark wing border. Under surfaee somewhat paler. Abdomen stout, with a very slight anal tuft in \circ; a stonter one in 子. Antenne blue-black, not enlarging toward tip, quite peetinate in 子. Palpi, a narrow ring around neck, the sides of the collar, a broad band curving across tegule and around the base of wings, a faint line aeross midule of thorax, two faint longitudinal lines between it and collar, legs, except outer base (sometimes whole length) of femora and tibise, hind third of abdominal joints, and a dorsal and lateral series of abdominal tufts or patches (the dorsal ones, espeeially on 3d and 7th joints, most persistent and conspicnons)-all golden-yellow : the rest of body black. The orbits are of a somewhat paler-yellow, and the face either gray or bluish.
d differs from \circ in the darker color of primarics, the narrower fringe of secondaries, the narrower ferruginous spot at apex of primaries, the more tufted abdomen, the broader and darker anal tuft, and the pectinate antenne.
Described from 6 J's, 6 o's, bred from Rubus. Approaches nearest to Trochilium marginatum Harr., and T. tibiale Harr..* from which it differs in the thoracie marks and the abdominal tufts.
Larea-Length $0.90-1.10$ inch $[=32.5-27.5 \mathrm{mmu}]$; diameter $0.18\left[=4.5^{\mathrm{mm}}\right]$. Color pale-yellow. Head dark-brown, with a few whitish hairs; mandibles blaek, the other trophi paler. Cervical shieh horns, pale-brown. Each joint with 8 pale, shiny piliferous spots, transversel 5 arranged on 2,3 and 12 ; the dorsal 4 quadrangularly arranged and the lateral 2 interrupted by stigmata on all the others. Thoracie legs slightly tinged with brown; prolegs, with the hooklets dark. Several specimens examined.[Sisth Rept., p. 113. Fig. 30.

Acronycta populi, N. Sp.-Larva-Length $1.50\left[\right.$ inch, $\left.=37^{\text {mm }}\right]$. Color yellowishgreen, covered with long soft bright yellow hairs which spring inmediately from the body, part on the back, and enrl ronnd on eath side. On top of joints 4, 6, 7, 8 and 11, a long straight double tuft of hack hairs, those on 7 and 8 the smallest. Head polished black with a few white bristles. Joint 1 with a black spot above, divided longitudinally by a pale sellow line, giving it the appearance of a pair of triangles. Joint 2 with two less distinet black spots. Thoracic legs black; prolegs black with brownish extremities. Venter greenish-brown. Described from many specimens. When young of a much lighter color, or almost white, with the black tufts short bit
more conspicuon*, with a distinet black dorsal line, two lateral purplisth-brown bands, and with hairs white, sparse and straight.
Individuals vary much : some have a black dorsal line, some have but three distinct black tufts; some have a sixth tuit of black hairs on joint 9 , and others have a few black hairs on all but the thoracie joints. Just before spinning up, many of the hairs are frequently lost, and the boly actuires a dull livid hue.
Woth.- $?$, front wings, white, finely powiered with dark atoms which give them a very pale gray appearance; marked with black spots as follows: a completr series of small spots on posterior border extemling on the fringes, one between each nerve; near the anal angle between nerres 1 and 2 a large and conspicuons spot bearing a partial resemblance to a Greek psi, placed sidewise, and from this spot a somewhat zigzag line ruming parallel with posterior border, but somewhat more arcuated towards costa, least distinct hetwen nerves 3 and 4 , and forming a large distibet dart-like spot between nerves 5 and 6 ; space between this line and posterior border, slightl? darker than the rest of the wing-surface on account of the dark atoms being more thickly sprinkled over it; four costal marks, one suhohsolete in a transverse line with the reniform spot, one conspicnons abont the middle, and in a line with reniform spot and anal angle, one about the same size as the last and looking like a blurred X about one-third the length of wing from base, and one snbobsolete, near the base; orbicular spot flattened and well defined by a black annulation; reniform spot indicated by a blurred black mark ruming on the cross-vein and sometimes somewhat crescent-formed; a V-shaped spot pointing towards base half-ray between costa and interior margin, in a transvorse line with the large costal spot which looks like a blnred X ; a blurred mark in middle at base, and lastly a narrow spot on the inferior margin, half-was between base anl anal angle. Hind wings same color as front wings; sonewhat more glosss, with the lumule, a band on posterior border one-fourth the width of wing, and sometimes a narrow coincident inner line, somewhat darker than the rest; the posterior border also with a series of spots one hetween each nerve. Under surface of front wings pearls-white with an arcuated brown band, most distinct towarls costa, across the posterior ome-thirl, all inside of this band of a faint yellowish-brown; lnuule and friuge spots distinct, and with a faint trace of the psispot; hind wings uniform pearls-white with a distinct and well defined dark wavy line rnuning parallel with posterior margin aeross the posterior one-third of wing, and with the lunule and fringe spots distinct. Antennse simple and bristle-formed, gray above, brown beneath. Head thorax and bodr, both above and below, silvery-gray. Legs with the tarsi alternately dusky and gras. δ differs from of hy his somewhat stouter antemme: moch narrower body, and narrower wings and fringes, the front wings having the apex more acuminate, and the hind wings scarcely showing the darker hind border.
Described from 2 o , 2 ofl bred. In the ornamentation of the front wings this species bears some resemblance to the European species tridens and p si, but otherwise differs remarkably, and especially in its larval characters. It bears a still closer resemblance both in the larra aud imago state to the pale varicty of a common species -knowu in Englaul as the "Miller" (A. leporina), but julging from the figures and description in "Newman's Natural History of British Moths," it mar he easily distinguished from leporina by the well defined orhicular spot, by the greater proximity of the two large costal sponts, by lacking a romed spot behind the disk, and by the more prolonged apex. It differs also in the larva state from leporina which foeds on the Birch. It likewise closely resembles interrupta, thomgh the larvar are remarkably different; and it also resembles lepustulina, the larra of which is monnown; but the specific differences will be readily perceived upon comparing Guence's descriptions. How near it approaches to Acronycta occidentalis, Grote, it i.s impossible to tell, as the anthor's description is exceedingly brief, considering the immber of closely allied forms; lut as that species has a bright testaceons tinge on the reniform spot, it evidently differs from mine. Harris's Apatela [Acronycta] Americana, though very difter-
ent in the imago, yet closely resembles populi in the larva state. I have on two occasions found the larva of Americana feeding on the Soft Maple, and it may be distinguished from populi, by its greater size; by the paler color of the bods; by the hairs being paler, more mmerons, shorter and pointing in all direetions, especialls anteriorly and posteriorly of each segment; by having on each of joints 4 and 6 two distinct long black pencils, one originating each side of dorsum, and ou joints 11 one thicker one originating from the top of dorsmm ; by a substigmatal row of small black spots (three to each segment, the middle one lower than the others) and by a trapezoidal relvets black patch starting from anterior portion of joint 11 and widening to auns.-[Second Rept., pp. 120, 121. Figs. 87, 8 .

Grote refers it, in his List, to lepusculina G:1.; having, I beliere, seen the type. Guenée must have had a uniformly colored and pale specimen as my typical specimens hare a distinct orbicular mark, deeper subterminal markings and the terminal space contrasting by its darker gray with the rest of primaries-all unmentioned in Guenée's description.

Xylina cherea, N. Sp-Larra-Length when full grown 1.20-1.30 inches [$=30-32^{\mathrm{mm}}$], eolor shins silvery-green on the back, darker below. A medio-dorsal cream-colored stripe; a subdorsal one represented by 3 or 4 irregularly shaped spots on each joint. A broad deep eream-colored stigmatal line, with a few green dents in it, extending to anal prolegs. Four slightly elevated cream-colored spots, encircled by a ring of rather darker green than the body, in the dorsal space, and in the subdorsal space there are fonr or more similar but smaller spots. Venter glancous-gray. Head as large as joint 1, free, glassy-green with white mottlings at sides and top, and pearly-white lips. Thoracic legs whitish. Prolegs concolorons with renter. When young the body is darker and the markings paler. Described from two living specimens.
Imago (Fig. 57, b)-Front wings, with the ground-color pale cinereous shaded and marked either with light brown, having a faint purplish tint, or with darker brown, having a similar reflection, or with a colder grayish-brown with the faintest mossgreen reflection: in the first two cases the dark color either blends and suffinses with the gromd-color so as to give the wing a nearly miform and smooth appearance, or else contrasts sufficiently to bring out all the marks distinct; in the latter ease (two specimens) the markings are very distinet and the ground color is whiter and more irrorate. In the well-marked specimens the usmal lines are readily distinguished, the basal half line, transverse anterior and transverse posterior being quite wary, pale, and bordered each side with a dark shade, the median shade dark and well defined and the subterminal line, though sometimes pale near costa, forming a series of dark angular spots: in the more uniform specimens these lines are barely distinguishable and perhaps the most constant is the sub-terminal which most often takes the form of a series of dark angular spots: the ordinary spots have a pale inner and a more or less distinct dark outer ammlation: the orbicular is larger than the reniform and is snftieiently double to take on the form of an ε, the mper part of which is always largest and with the interior space paler than the general surface, while that of the lower part is either concolorons or darker; the form is, howerer. quite irregular and differs sonetimes in the two wings of the same species: the reniform spot is generally well defined, and is either darker, or has a tinge of reddish-brown, interiorls: at the base of the wing is a more or less distinct pale space oceupying the upper half, and bordered below by a brown line which is straight abont half its length and then extends upwards pud ontwards towards transerse anterior. A tolerably distinct terminal line, with the fringes dark. In taking a general view of the varsing specimens this pale basal space, the pale upper part of the orbicular and the dark subterminal line, seem to be the most constant characters of the species. Hind wings gray-hrown in-
clining to cinamon-brown, with the posterior borler bit slightly darker and the fringe paler. Under surface quite uniform, that of front wings being nacreous gray with a faint discal spot and with a narrow costal and broad terminal border of pale fulvous, insted with purple-gray ; the hind wings of this last color with the luunle aud line distinct. Head uearly entire, thongh the quadrifid arrangement of the hairs is traceable; palpi hairy throughont. Thoras quite spuare, of same color as primaries and with the collar bordered behind with brown and sometimes the edges of the tegnla similarly bordered. Abdomen of same color as hind wings with lateral tufts, aul cut off squarely at apex. Expanse $1.32-1.82$ inches [$=34-455^{\mathrm{mm}}$].

Described from 3 specimens ferl on grape-vine, 2 on peaches and 1 on Cercis canadensis. Other captured specimens examined.

This species is the analogue of, and very closely resembles the European Iylina conformis, which is known under various synonyms. A specimen sent to Mr. P. C. Zeller of Stettin, Prnssia, was, however, pronounced distinct. The well-marked irrorate form still more closely resembles Guenée's cinerasa found in Switzerlaud, and which he himself thinks may prove to be a variety of conformis. The more I study the species of the Noctude as they occur in nature, the more I am struck with their great variability, and there can be no doubt that many of the so-called species will turn out to be but varieties when we better understand them. In this large family none but the more strikingly marked species should ever be described without an accompanying description of their preparatory states and of their principal variations. I am unacquainted with any of Walker's species except subcostalis, which is rery different, and if this should prove to be a synonym of any of them the fault must be laid to the difficulty under which the naturalist in the Western States labors for want of proper libraries to refer to. It differs essentially from Grote's Bethunei and capax as described and illustrated in Volume I of the Transactions of the Anerican Entomological Society. I am informed by Mr. [J.] A. Lintner of Albany, N. Y., that Dr. A. Speyer of Rholen, Fiirstenthm Waldeck, Prussia, who gives much attention to the Noctuidæ, has it marked Celona oblonga in his MS., but the insect evidently does not belong to that genus, and as the German promnciation of Xylina much resembles the English pronmenciation of Celcua, the reference to the latter is donbtless due to a verbal misunderstandiug.—[Third Rept., pp. 135, 136. Fig. 57.

Now referred, in Grote's List of Noctuide of N. A., to Hiibner's genus Lithophane.

Amphipyra conspersa, N. Sp.-Larra.-Fomad full gromin July 2, 1807, on Hazel. No pyramidal hump, and of a uniform emerald-green, the dorsal palpitations visible and the stigmata pale, with a black annulation, but with no other markings either on the head, body, or legs.

Imago-Like pyramidoides in every particular except that the brown of front wings is almost uniformly spattered over, more or less suffusely, with pale-grayish spots, so that no regnlar marks appear. The costal marks are however, tolerably distinct as in pyramidoides, and by careful examination and comparison traces of the more conspichous marks of that species may be discerned.

Described from one of brel July 31.-[Thirl Rept., p. $\hat{5}$.
As remarked at the time, the specimen from which the description was made was a bred one and perfect. Grote, in his List of Noctuide, considers it simply an aberration of pyramidoides, but this can hardly be the case, as the larva also shows difterences.

Agrotis scandras, N. Spl-Lara.-Average length when full grown 1.40 [inch, $\left.=35^{\mathrm{min}}\right]$. Ground-color very light ycllowish gray, variegatel with glancous in the shape of different sized patches, which are distinctly see unuder the lens to be separated by fine lines of the light gromud-color. A well-defined dorsal and less distinct
subdorsal and stignatal line, cansed by these patches becoming larger and darker; another and still less distinct line of the same kind under stigmata. The dorsal line frequently with a very fine white line along its middle, especially at sutures of segments. Piliferous spots in the normal position; those above black, those at the sides lighter. Stigmata black. Head and cervical shield tawny, the latter with a small black spot each side, the former with two in front, and two eye-spots each side. Caudal plate tawny, speckled with black. Venter and legs glancous. Bristles fine and small. Filled with food it wears a much greener appearance than otherwise, while when roung it is of a more nniform dirty whitish-yellow, the lines less distinct but the piliferous spots proportionately larger. Hearl rquite variable in depth of shade.

Perfect Insect.-Average length $0.70\left[\right.$ inch,$\left.=17.5 \mathrm{~mm}^{\mathrm{mm}}\right]$; alar expanse 1.50 [inch, $=$ 37 mm]. General color of fore wings very light pearly blnish-gray, with a perceptible deepening posteriorly. Quite variable, sometimes of a more deeided blue, at others inclining to lnff as in Leucania unipuncta, Haw. Markings, when distinct, as in Plate 1, Figures 5 and 6. With the exception of the reniform spot and subterminal line, however, they are nsually distinct only on costa, being either indistinct or elltirely obsolete on the rest of the wing. The subterminal line is light, with a more or less dark diffuse shade each side, which, in some instances, forms into sagittate spots. A black stain at the lower part of reniform spot forms a most distinctive character. Hind wings very pale and lacking the bluish cast of fore wings; lunnle distinet, and a dark shade, enclosing a lighter mark, as in Heliothis, along posterior margin. Eyes dark; head and thorax same as fore wings; abdomen same as hind wings. The whole under surface the same as hind wings above, the lunules and arcuated bands faintly traced, the fore wings having a darker shade in the middle.

Described from 30 bred specimens.-[First Rept., pp. 7s-79. Pl. 1, Figs.5, 6.
Agrotis Cochranir, Riley-Imago.-Fore wings of a light warm cinereous, shaded with vandyke brown and nmber, the terminal space, except at apex, being darker and smoky. Basal, middle and limbal areas of almost equal width, the middle exceeding somewhat the othcrs. A geminate dark basal half-line, usually quite distinct. Transverse anterior geminate, dark, somewhat irregularly undulate, and slightly obliquing outwards from costa to interior margin. Transverse posterior geminate, the inner line being dark, distinct and regularly undulate between the nerves, while the onter line is plain and much paler; it is arenated superiorly and inversely obliques for two-thirds its width. Orbicnlar and reniform spots of normal shape, having a fine, dark annulation, whieh is however obsolete in both, anteriorly ; the orbicular is concolorons with the wing, whilst the reniform has a dark inner shade with a central light one, and forms with the transverse posterior a somewhat oval spot which is also dark. Merlian slade dark and distinet interiorly, shading off and becoming indistinct in center of wing, and quite dark between the two spots, giving them a fair relief. Subterminal line single, light, acutely and irregularly dentate, with an inner dark shade, but warmer than that of terminal space. Terminal line very fine, almost black, slightly mudnlate. Fringes of same color as wing, with a light central line, having an outer dark coincident shade. A dark costal spot in basal area; at termini of the usual lines, and two light ones in subterminal space. In some specimens one or two fine dark sagittate marks are discernable, and also a fine black claviform mark. Hind wings: whitish, with a darker shade aloug posterior margin. Under surface of fore wings somewhat lighter than the upper surface and pearlaceons interiorly, with a smoky arcuated band - more definite near the costa than elsewhere - and a tolerably distinct lunnle. Under surface of hind wings concolorons; slightly irrorate with brown anteriorly and posteriorly, and with an indistinct lumule and band. Antenne, prothorax, thorax, tegule and body of same color as primaries, the prothorax having a darker central line, and in common with the tegula a carneous margin. Under surface lighter; legs with the tarsi spotted.
This moth, in its general appearance, bears a great rescmblance to Hadena chenopodii, but the two are found to differ esseutially when compared. From specimens of II.
chenopodii, kindly furnished me by Mr. Walsh, and named by Grote, I am enabled to give the essential differences, which are: 1st. In A. Cochranii, as already stated, the middle area exceeds somewhat in width either of the other two. while in H. chenopodii it is but half as wide as either. $2 d$. In the Agrotis the space between the spots and between the reniform and transverse posterior is dark, relieving the spots and giving them a light appearance, whilst in the Hadena this space is of the same color as the wing, and the reniform spot is dark. The claviform spot in the Hadena is also quite prominent, and onc of its distinctive features, while in the dgrotis it is just about obsolete.
There are specimens that seem to be intermediate between these t wo, but all those bred by me, both male and female, were quite constant in their markings, and their intermediates will donbtless prove to be distinct species or mere varieties.

Larra-Length 1.07 inches [$=26 . \mathrm{s}^{\mathrm{mm}}$]. Slightly shagreened. General color, dingy ash-gray, with lighter or darker shadings. Dorsum light, inclining to flesh color, with a darker dingy line aloug its middlc. The sides, particularly along the sub-dorsalline are of a darker shade. On each segment there are eight small, black, shiny, slightly elevated points, having the appearance of black sealing-wax, from each of which origivates a small llack bristle. The stigmata are of the same black color, and one of the black spots is placed quite close to them anteriorly. Head shing and of the same dingy color as the body, with two darker marks, thick and almost joining at the upper surface, becoming thinner below and diverging toward the palpi. The upper surface of first segment is also shiny like the head. Ventral region of the same dingy color, but lighter, having a greenish tinge anteriorly and inclining to yellow under the anal segment. Legs of same color. It has a few short bristles on the anterior and posterior segments.

Chrysalis. - Length 0.70 of an inch $[=17.5 \mathrm{~mm}]$. Light sellowish brown with a dusky line along top of abdomen. Joints, especially of the three segments inmediately behind the wing.slieaths, dark brown. The brown part of thesc three segments, minutely punctnced on the back. Eyes dark brown, and just above them, a smaller brownish spot. Two quite minute bristles at extremity.
Described from unmerous bred specimens. - [First Rept., pp]. 75-76. Fig. 26.
There is little question but that this is the moth briefly characterized by Harris (Ins. Inj. to Veg., p. 44t) as Agrotis messoria, an examination of the types confirming this view. A. repentis $\mathrm{G} . \& \mathrm{R}$. and A . lycarum are also conceded by Grote to be synonyms.

Plutsha brassic.e, N. Sp. - Larra - Pale yellowish translucent green, the dorsum made lighter aurl less translucent by longitudinal opaque lines of a whitish-green ; these consist each side, of a rather dark vesicular dorsal line, and of two very fine light lines, with an intermediate broad one. Tapers gradually from segments $1-10$, descending abruptly from 11 to extremity. Piliferous spots white, giving rise to hairs, sometimes black, sometimes light colored; and laterally a few scattering white specks in addition to these spots. A rather indistinct narrow, pale stigmatal line, with a darker shade above it. Head and legs translucent yellowish-green, the head having five minute black eyelets each side, which are not readily noticed with the naked eye. Some specimens are of a beautiful emerall-green, and lack entirely the pale longitndinal lines. Described from numerous specimens.

Chrysalis - Of the normal P'usia-form, and varying from yellowish-green to brown.
Moth - Front wings dark gray inclining to brown, the basal half line, transverse anterior, transverse posterior, and snbterminal lines pale jellow inclining to fulvous, irregularly undulate, and relieved more or less by deep brown margins; the undulations of the subterminal line morc acuminate than in the others, and forming some dark sagittate points; the basal half-line, the transverse anterior near costa, and the transverse posterior its whole length, being sometimes obscurely double : four distinct equidistant costal spots on the terminal half of wing, the third from apex formed by
the termination of the transverse posterior; posterior border undulate with a dark brown line which is sometimes marked with pale crescents; a series of similar crescents (often mere lots) just inside the terminal space; the small sulb-cellulary silwer spot oval, sometimes uniformly silvery-white hut more often with a fulvous centre, sometimes free from, but more often attached to the larger one which has the shape of a constricted U , very generally with a fulvons mark inside, which extends basally to the transverse anterior at costa. Fringes dentate, of the color of the wing, and with a single undulating line parallel to that on the terminal border. Hind wings fuliginous, inclining to yellowish towards base, and with but a slight pearly lustre; fringes very pale with a darker inner line. Under surfaces pale fuliginons with a pearly lustre, the front wings with a distinct fulvous mark under the snb-cellulary spots, speckled more or less with the same color around the borders of the wing, the fringes being dentate with light and dark; the iind wings speckled with fulvons on their basal half, and with the fringes as above. Thorax variegated with the same color as front wings, the tufts being fulvous inclining to pink. Abdomen of gray, with a few pale hairs near the base, and scarcely extending beyond the margin of the hind wings; o longer, corered with pale silky hairs, a distinct dorsal brown tuft on each of the three basal segments, and two large lateral either fawn-colored or golden-yellow brushes on the fifth segment, meeting on the back and partly covering two smaller brushes on the sixth, which are tipped with black; terminal segment flattened and with two lateral more dusky and smaller tufts: underside of thorax and abdomen gray, mixed with Hesh-color. Alar expause 1.55 inches. Described from numerous bred specimens. In a suite of specimens bred from the same brood of larree a considerable difference in the general depth of color is found, some being fully as dark again as others.

Closely resembles Plusia ni, Engr., which occurs in Italy, Sicily, France, and the northern parts of America. Mr. P. Zeller of Stettin, Prussia, to whom I sent specimens, considers it distinct however from the Europeau ni, and I have consequently given it a name in accordance with its habits. - [Second Rept., pp. 111-112. Fig. 81.

Notwithstanding its close resemblance to $n i$, the best anthorities agree with Zeller in considering it distinct, as it certainly is. Strangely enough this same brassice, or what is extremely close to it, occurs also in South Europe and is figured in Stainton's Entomologist's Ammual for 1870 as $P . n i$, one specimen having been found on the south coast of England, which specimen Zeller, as he wrote me, belieres to liave come from America. Standinger would probably characterize brassiece as a "species Darwiniana," and there are doubtless individuals of both the species which approach each other so closely as to be undistinguishable. There is such variation in the silver spot in either that it cannot be depended on alone, but Speyer (Europäisch-Americanische Verwandtschaften; Stettiner Ent. Zeit., June, 1875, p. 165) has presented other differences that are constant in detail, the most noticeable of which are the darker and more irrorate coloring and the interrupted and wary terminal line of brassice, against the paler, smoother, more metallic coloring and the perfectly straight and unbroken terminal line of ni.

The larva is the most common cabbage pest in the Southeru States, and is infested with an undetermined parasite. Mr. E. A. Popenoe has found it feeding on the leaves of Crepis, and what appears to be the same has been found by my assistants on Clover, Dandelion, Senecio scandens, and Chenopodium.

Aplodes rubivora, N. Sp. - Larva - Average lengtl 0. 30 inch [$=20 \mathrm{~mm}$]. Color light yellowish-gray, larker just behind each joint, and very minutely shagreened all over. Oneach segment a prominent pointed straight projection each side of dorsum, and several minor warts and prickles below. Two very slightly raiseld, longitndinal lighter lines along dorsmm, between the prominent prickles. Ten legs.
I'erfect insect - Alar expanse 0.50 inch $\left[=12.5^{\mathrm{mm}}\right]$; length of borly 0.25 inch $\left[=6^{\mathrm{mm}}\right]$. Color verdigris-green, the scales being sparse so that the wings appear sub-hyaline. Fore-wings with two transverse lighter lines dividing the wing into three parts, proportionate in width as $3,4,2$ counting from base, and parallel with posterior margin ; also a faint line between these two, running to about $\frac{1}{3}$ of wing from costa. Hind wings with two similar transverse lines, dividing the wing in like proportion, the onter line not parallel with margin, but wavy and produced posteriorly near its middle. Costa pale ; fringes obsolete. Head, thorax and ablomeu greeu above, but, together with antenner and palpi, white beneath.
Described from one of specimen. - [First Rept., pp. 139-140. Pl. II, Fig. 2.5.
Dr. Packard, in his Monograph of the Geometred Moths, etc. (U.S. Geol. Surr. of Terr., Vol. X, 1876, p. 332), refers it to the genus Synchlora Gor., and adds the conrentional ending to the specific name, so that the species becomes Synchlora rubivoraria. Synchlora albolineata Pack. and Eunemoria gracilariu Pack. are given as synonyms.

Pifycita [Acrobasis] nebulo, Walsh-Imago.-I reproduce here the description of the moth in Mr. Walsh's origiual words: "Expansion of wings $7-10$. Length of body 3-10. General color light cinereous, varied with dusky. A row of abont seven subsemilunar or lincar dark spots on outer margin of fore wing. Then oue-fourth of the distance to the body a waving light cinereous band parallel to the exterior margin, marked ou each side with dusky black. Nearly at the centre a much abbreviated black band. Beyond the centre on the costal margin a subtriangular dusky black spot, the apex of which connects with the apex of a much larger snbobsolete triangular brickred spot which extends to the interior margin, and is bounded on the outside by a wary light cinereous, band, which is again bounded by a wavy dusky black band proceeding from the apex of the costal triangle. Base of wing dusky black, inclosing a small ronnd light cinereous spot. Hind wings and all beneath light cinereous shaded with dusky, the fore wings darker. Tarsi dusky with a marrow light cinereous fascia at the apex of cach joint. Hiud tibia fasciate with dusky at the apex, sometimes obscurely bifasciatc. Intermediate tibia fasciate with dusky at the centre, the fascia generally extending to the base, but becoming lighter. Auterior tibia dusky, with a narrow apical light cinereous fascia. Palpi, both labial and maxillary, dusky."

When compared with other closely allied and resembling species, this little moth may be characterized in the following manner: The ground color of the front wing is decidedly bright and pale; the discal spots are almost always confluent, thns forming an abbreviated transverse bar; the dark markings are well defined and the triangular dark costal spots starting from the inner third of the wing is distinctly relicved, while the "brick-red" (nearer a cinnamon-brown) triangular spot which opposes it is large, so that the space it occupics on the inner margin is nearly as wide (generally within one-third) as that between it and the transverse posterior line. The lower half of the basal space is often of a distinct cinnamou-brown, and an oblique dusky band, which Mr. Walsh has not mentioned, is often quite distinct, runuing from near the aper to the brown triangle, where it connects with the inner margin. The species recalls, in facies, the European Myelois suacella. In a suite of specimens bred from Apple, Quince, Plum and Cherry, there is sufficient variation to prevent a too rigidly drawn description, but the above characters obtain in all of them, and such variation as occurs runs in the direction of the variety presently to be described.

Larva-[Length 0.5 inch] Brown or greenish in color. Cylindrical. sTapering grad-
nally from first to last joint. Head and cervical shield darker than the rest of body, slightly shagreened, sparsely cosered with long hairs, the shield quite large, convex. and occupying the whole surface between stigmata-there being in front of the latter a snlb-cervical dark horny plate. Joints 2 and 3 wrinkled as at Fig. 18, c the former with two rather eonspicnous dark dorsal piliferous spots. The other joints with a few fine hairs, the stigmata plainly visible, and the anal covering but slightly horny. Legs and prolegs of moderate size and of same color as body.

Described from numerous specimens.
Chrysalis-Mahogony-brown, with no striking character. Abdomen, especially above, with rery minute punctures.

Variety nebuleda (Fig. 20), e).-I have bred a single specimen from whld Crab (Cratcegus) which differs in some essential features from the normal form, but which nevertheless can only be considered a variety of it, as I observed no larval differences. It differs in the more uniform and subdued tone of the front wings, the markings being more suffused and indistinct : but principally in the relative narrowness of the space outside the transverse posterior line the greater consequent width of the middle area, and smallness of the triangular brown spot-the space it occupies on the inner margin being scarcely one-half as wide as that between it and the transverse posterior linc. The discal spots are also separated.
Described from one good specimen. An interesting fact connected with this variety is, that precisely the same form occurs in Europe, as I found a single specimen in the cabinet of M. J. Lichtenst in of Montpellier, France, which he had captured in that vicimty, and which he allowed me to bring lome for comprison. It seems to be rare, even there, and whether indigenons or imported from this country, is a question yet to be solved.-[Fourth Rept., 1. 41-42, Figs. 18, 19, $2(1$.

Acrobasis juglandis, LeBaron.-(Fig. 20, d)-I have bred this species from Hickory, but as Dr. LetBaron has also bred it abmelantly from Waluut, and has signified his intention of describing it in his second annual Report, I adopt his proposed name, and shall content myself with pointing ont the manner in which it may generalls be distinguished from nebulo. Firstly, by the paler basal area of the front wings, which is sometimes almost white, especially near the costa, and by the head and shonlders and sometimes the $z^{\text {o antennal horn partaking of this paler color. Secondly, by the darker }}$ median space, the dark triangular costal spot not being well relieved posteriorly, but extending so as sometimes to darken the whole space. Thirdly, by the discal spots always lueing well separated.

Such are its specific characters as taken from 3 hickory-bred and 6 walnut-bred specimens; but of the former there is 1 which when placed alongside of some of the more abnormal specimens of nebulo, can scarcely be distinguished from them, and, if chosen without knowledge of its larva, would certainly be placed with them; while of the latter there are two which nearly as closely resemble the variety nebulella. In general characters, in the size of the brown triangular spot, and the manner in which the inner margin is dividen, juglandis is intermerliate berween nebulo and nebutchlu. In one of the lickory-bret specimens, the general color is quite warm, and the basal area carneous rather than white.--「Fourth Rept., 1. 43. Fig. 20, a, b, al.

Dr. LeBaron published his description of it about the same time, muler the name Phycita juglandis, in his Second Report on the Insects of Illinois, p. 123 .

Pempelfa Hammondi, N. Sp. Imago (Fig. 21, d).-Average expanse 0.43 inch [=12min]. Front wings glossy purplish-hrown withtwo silvery gray transverse bauds dividing the wing on costa in about three equal parts, the basal loand sharply defined outwardly and always extending to inner margin, the posterior band never extending more tham half way across the wing, and generally not more than one-third, illy defined. In some specimens the basal transverse band is quite narrow, with the basal space a shade paler than the median: in others the hand forms a double line. In some
specimens also, a narrow pate transverse line outside the second liand, and a pale terminal shade, are visible. Hind wings uniformly paler gray. Under surface glossy gray, with no marks, the tront wings a shade darker than the hind. of differs from $\$$ in the basal portion of the antemise being curved, and the curve filled with a tuft of scales.
Described from numerous bred specimens. The species las the general facies of the European Cryptoblabes bistriga, which is a larger insect.

Latra.-Length $0.45-0.50$ inch $\left[=11-12.5^{\mathrm{mm}}\right]$. General color olive, or pale green, or brown, with a broad lark stripe aloug each side of back. Tapers slightly both ways, joints $4-12$ inclusive, divided into two transverse folds. Freckled with numerous pale specks and with piliferons spots, the specks often taking the form of two pale broken lines along the upper edge of dark stripe. The piliferons spots are pale with a central black dot, and are best seen in the dark specimens. On joints $4-12$ inclusive they are placed 4 in a square on the middle of the back, and four more each side, the two upper lateral ones being on the anterior fold, the stigmata appearing as ininute rufous specks between them. Both these spots are often double. The third lateral spot is on the posterior fold aul the fourth is subventral and anterior. The hairs proeceding from these spots are long and setaccous. Head horizontal, freckled, pale behind, tinged with green in front and with a few long hairs. Joint 1 also freckled and with a large black piliferons tubercle with a pale basal annulation and in range with middle of dark stripe. Joint 2 with similar black tuhercles with a white centre and replacing the uppermost lateral pale spot. There are but two of the sinall pale dorsal piliferous spots on this joint (between the tulbercles) as well as on joint 3. Beneath immaculate, except that the thoracic legs have sometimes a few dusky dots.

In the very dark specimens the head, eervical shield and anal plate remain pale. The cervical shiekd is then well defined with tonr small piliferous specks at anterior edge, and the large shing tubercle forms the extreme anterior angle.
Described from uиmerous speeimens.
Pupa. -0.24 inch $\left[=6^{\mathrm{mm}}\right]$ long; rather stout and short, with two minute diverging spines and a few stiff bristles at tip.
In many specimens the subdorsal dark stripe is obsolete or sub-obsolete, bint even then the four black tubercles on joints 1 and 2 characterize the larva sufficiently.[Fourth Rept., p. 46. Fig. 21.

Tortrix Rileyana, Grote-Larea-Length, Hickory feeding, $0.60-0.80$ inch [$=$ $15-20^{\mathrm{mm}}$]; Snowberry feeding, $0.40-0.50$ inch $\left[=10-12.5^{\mathrm{mm}}\right]$. Largest on segment 2 , tapering thence gradually to anus. Ground color dull yellow. Covered with large, distinct, black, sealing-wax-like, slightly elevated spots, each giving rise to several fine bristles. These spots are thus arranged on each segment: 2 each side of dorsum the posterior ones widest apart; 1 at sides in the middle of the segment, containing the stigmata in its lower hind margin; 1 smaller and narrower just below this, on a somewhat elevated longitudinal ridge, and 1 round one below this ridge on the posterior part of the segment. Segments 2 and 3 have but one spot each side of dorsum. Two distinct wrinkles on all the segments, more on 2 and 3 . Head, cervical shield, and caudal plate black. Venter dirty yellow with black marks; legs ditto.

Chrysalis-Honey-yellow, rohust in the middle, and with two transverse rows of minute teeth across the back of each segment.

Perfect Insect-From Hickory-Average expanse 1 inch, length of body, $0.35[=8.8 \mathrm{~mm}]$. Deep ochreous. Fore wings evenly washed with purplish, leaving the fringes and costal edge dark ochreous. The markings take the shape of dark velvety brown rombled maculations, generally of small size and faintly shatled with ochreous on the edges. Three of these subterminally at the base of the wing, suberual, situated interspaceally between the nervures. At a little within the midile of the costa are two fused maculations, the most prominent. Before and beyond these, some faint costal marks. At ${ }^{\text {t the }}$ extremity of the discal cell, above median nervure, is the first of a
sermes of maculations，normally four in number but mot constant，nsually uneven m suze． A subterminal series of shots is inangurated on costa by a large，compommb shaded maculation．Below this．over the median nerrules，sweeps an ontwardy rounded series of small approximate dots．Two dots on costa，within and at the apex．and a faint terminal srries of minnte streaks is shortly discontinned．Hind wings of a lus－ trons bright deep uchreons；pale along the costal margin and darker shated along in－ ternal margin．Beneath，as are the hind wings above：both wings immaculate．fore wings the darker．Budy and appendaces concolorous，bright deep ochreous．Anten－ na simple．Numerons bred specimeus．

From showbery－で俥．symphoricurni－Mneh paler，the fore wings not being as dark as the hiud wings of the above．The upper surface of fore wings not washed with purplish but merels of a darker ochreous than the hind wing．The maculations en－ tirely similar but ferruginons，paler and the slighter costal marks obsolete．Legs at base and under thoracic surface almost whitish．Arerage expanse， $0.62\left[=15.5^{\mathrm{mm}}\right]$ ； length of body， $0.30[=7.5 \mathrm{~mm}$ ］．Described from numerous specimens．Under surfaces exactly alike in both varicties，－［First Rept．，p．154．Fig．85，and Pl．2，Figs．3， 4.
Torthix Cinderella，N．Sp．－Imago．－Alar expanse exactly $1-2$ inch［ $\left.=1 \cdot .5^{\mathrm{mmu}}\right]$ ． Front wings deel，glossr ash－gray，immaculate．Under a lens they have an irrorate appearance，while in certain lights some of the scales alpear to form a series of darker transverse simuous lines．Also scattered over the wing may be noticed a dozen or more reddish scales，which are not sufficient，however．to destroy the nuiform immac－ ulate appearance．Head，mouth－parts，antennie，legs，and abdomen of same color． Hind wings paler and semi－transparent．Fringes of all wings concolorous．Under surface of wings pale nacreous，inclining to pale fulvons around the margins．

Descriled from two lred specimens．
Larva（Fig． $2: 2$, a）．－Length 0.50 inch $[=12.5 \mathrm{~mm}]$ ．Form of that of Acrobasis nebulo， wrinkled very mnel in the same manner．Color yellowish－green，the piliferons spots of the same color，but readily distinguished by their polish surface；ther are placed in a transverse row on thoracic joints，and on joints $4-12$ there are four trapezoidally on dorsum，two laterally on the tirst fold and one subrentral．Stigmata between the two lateral spots，and yellowish．Head and cervical shield gamboge－yellow；only a shade darker than body；labrum and two basal joints of antenne paler or white，the termiual joint brown ；ocelli on a somewhat crescent－shaped black spot（the most con－ spicuons character）a second dusky spot at base of head laterally．Legs immacnlate． Described from many specimens．
Puper（Fig．De，b）．－Length 0．25－0．30 inch［ $=6-7.5 \mathrm{~mm}]$ ．Brown，characterized by a peculiar rounded projection from frout of head；by a little pointed prominence at base of each anternat，and each side of penultinate abdominal joint；and by termi－ nating in a broad suppressed piece which produces two decurved hooks．Posterior rim of abdominal joints rasped dorsally，and a slight rasped dorsal ridge near the anterior edge of larger joints．Legs reaching onls to end of wing－sheaths．The head－promi－ nence varies in size and slightls in form．－［Fourth Re ${ }_{1}$ t．，p． 47.

From specimens reared from cranberrefeeding larse receired from Mr．Jno．H．Brakeley，of Bordentown，N．J．．I am satisfied that this is the same species briefly characterized by Packard in the 1st edition of his Guirle（1． $33 t$ ）as Tortrix oxycocceme，and that T．malivorana LeBaron （my Rep．IV，p．4i）is but a dimorphic orange form，subsequently de． scribed by Packard as T．coccinioroma（Hayden＇s Report of the U．S． Geol．and Gengr．Surver of the Ternitories $1578, ~ p .522$ ）．The orange and ash－gray specimens are thus bred both from Apple and Cranberry． I have reared hoth forms from Cranberry and from Apple，and they are undistinguishable in the larva and pupa states．The gray form is often
more or less suffused with orange scales and the orange form less frequently with gray seales. This is the most remarkable case of dimorphism with which I am familiar in the family, and points strongly to the important bearing of biological facts on a true classification. The dimorphic coloring is not sexual, but oceurs in both sexes. The egge of this species are very flat, cirenlar and translucent, with a diameter of 0.7^{mm}, and are laid singly on the underside of the leaf near the mid rib. The species belongs to the genus. Tercs. and as Packard's specific name oxycoccana has priority, the insect should be known as Teras oxycocetna, Pack. The insect, according to Mr. Brakeler. who gives an account of it in the Report of the Serenth Annual Convention of the New Jersey Cranberry Association ($1879, \mathrm{p}, \mathrm{i}$), commonly affects, also, the high-bush whortleberry. The gray form of the moth is most frequent in autum.

Gelechia gallesolidaginis, N. Sp.-Lercu.-Length $0.60[i n c h,=15 \mathrm{~mm}]$. Cylindrical. Color dark dull-brown, withont shine. Largest on middle segments; tapering from 4 th to head, and from 9th to extremity. Each segment impressed tramsversely in the middle, thus forming two folds, the thoracic segment having other such folds. Six small piliferous spots, two each side of dorsum and one above stigmata, which, together with the stigmata, are shiny and of a lighter brown than the body. Head and cervical shield light shiny-brown.

Chrysalis.-Length $0.50\left[\right.$ inch,$\left.=12.5^{\mathrm{mm}}\right]$. Mahogany-brown. Form normal. Blunt at extremity.
Perfect moth.-Arerage length $0.33\left[=9.5^{\mathrm{mm}}\right]$. Alar expanse $¢ 0.95$ [inch, $\left.\simeq 24^{\mathrm{mm}}\right]$, o 0.75 [inch, $=18.8 \mathrm{~mm}]$. Fore wings deep purplish-brown, more or less sprinkled with carneous. A light carneous band starts from the costa near the base, and curves towards the middle of the inner margin, which it occupies to a little beyond the begimming of the cilia, where it curves upwards towards the tip, reaching only half way up the wing. Here it is approached from above bs a somewhat diffuse spot of the same color, Which starts from the costa just behind the apex, and runs down to the middle of the wing.
In the plainly marked individuals there is an extra line running from the middle of the inner margin, outwardly obliguing to the middle of the wing, and then back to the inner margin a little beyond where the cilia commences, but in the great majority of specimens this mark is indistinct. Cilia light carneous. Hind wings slate-gray, with the cilia lighter. Antemme finely annulated with the same two dark and light colors. Head, thorax and palpi light, with a sprinkling of the dark brown. Body dark, with light anuulations. The species varies in the distinctn ess of its markings, and the light parts of the front wing appear finely sprinkled with brown under the lens. Male generally smaller than female, with the antenna proportionately a little longer.

Described from numerous bred specimens.
It seems to resemble (r. longifasciella of Clemens, in coloration and pattern; but unfortunately our late lamented microlepidopterist, failed almost always to give the measurement of the species he described, and it is impossible to tell how moch mine resembles that species. Yet, as longifasciella was described from two mutilated specimens, received from A. S. Packarl, jr., and as that gentleman has seen my insect and declared it an undescribed species, there can be little doulst of the fact.-[First Rept., p. 175. Pl. II, Figs. 1, $2, \overline{0}$.

Pterophorus Cardur, N. Sp.-Larcu.-Average length 0.60. Largest in the middle of body, tapering thence each way. Color light straw-yellow-greener when young. Somewhat darker, partly translucent, dorsal, subdorsal aud stigmatal lines. Two lateral rows of black spots, the lower spots rather smaller and placed behind the
upper oncs. A third row above these, and others along the back, but so small that they are geuerally imperceptible with the nakel eye, except on the thoracic segments, being especially distinct on segment 2 . Head small, black, sometimes inclining to brown. Cervical shield black, divided longitudinally in the middle by a lighter line. Caudal plate also hack. Segment 11, besides the spots above mentioned, has two transverse black marks, the posterior one the largest. Thoracic leys black, the others of the same color as the body.

Described from 12 specimens.
Pupa.-Average length 0.45 . Of form of Plate 2, Fig. 14. Soft, dull yellow, with a lateral dusky line each side of dorsum, and another, less distinct, each side of venter. Also dusky about the head and wing-sheaths.

Perfect insect.-Length 0.45 ; alar expanse 0.80 . Front wings bifid, the cleft reaching not much more thau $\frac{1}{4}$ of wing; tawny yellow, with a distinct dark brown triangular spot rumning from costa to the base of eleft-sometimes a little below it-its posterior margin with a slight concave curve. Three dusky, diffuse longitudinal spots, one placed on the lasal third of the wing at costa and frequently reaching along the costa to the triangnlar spot; one near the interior margin, a little nearer to the base of wing than the last, and one on the outer third of the interior margin. Two light-colored transverse lines across the end of wing, one rery near and parallel with posterior margm, the other bordering the triangular spot behind, and curving across the lower lobe towards posterior angle. The space between these two light lines usually darker than the ground-color. Fringes dark with a light margin. Hind wings trifid, the upper cleft reaching a little beyond the middle, the lower one to the hase of wing. Color ashy-brown, the lower lobe produeed into a dark angular spot about their middle postcriorly. Antenna, palpi, head, thorax, and body, tawny yellow; legs of the same color with the exception of the tarsi, which are almost white, with alternate dark brown spots, the spines being black, with dusky tips.-[First Rept., pp. 180-181. Fig. 98, and Pl. II, Figs. 13, 14.

Zelier has since (187ン) referred it to the genus Platyptilia (Beitr. zur Kemntn. N. A. Nachtfalter, 2nd part, p. 118), and indicates the difference between it and a very closely allied European species, P. Zetterstedtii. He very properly, becanse of the incongruous compound, drops the conventional ending dactylus which I used in the original description.

HETEROPTERA.

Nysius destructor, N. Sp.-General color grayish-brown; of shape of N. thymi Wolff. Head either minutely or more coarsely punctate, and more or less distinctly pubescent; the surface usually brown, with a distinct black, longitudinal line each side, broadening on the crown, but generally leaving the orbit of the eyes pale; these lines sometimes more diffuse and occupying the whole surface, except a median brown spot at base of erown, and a narrow, paler spot on the clypeus; oeelli piceons; eyes opaque, either black or slate-color; face sometimes uniformly pubescent and appearing dark grayish-brown; but more generally black each side of rostrum, with a distinct yellowish-brown spot on the checks below the eyes; rostrum piceous, paler at base and reaching to hind eoxe ; antenna either pale yellowish-brown or darker brown, the torulus and first joint darkest. Thorax, pronotum narrowing anteriorly, the sides slightly sinuate, irregularly and more coarsely punctate than the head, more or less pubesrent, dingy yellow or brown, with a transverse black baud near the anterior edge. obscuring the incision and learing the edge pate, espeeially in the middle, where there is often a conspicnous pale spot; also tive more or less distinct longitudinal dark lines, the central one most persistent and leading on the posterior margin to a pale, shiny, impunctate spot ; the callus at hind angles, and sometimes an intermediate npot between it and the mediau one, and the entire posterior margin, also pale and impunetate; scutellum dark, coarsely punctate, sometimes with a smooth median lon-
gitudinal ridge ending in a pale spot, and with the lateral margins pale ; prosternmen dark, more or less pubescent, the anterior and posterior margins, and a loand outside of coxie, more or less broadly pale; mesosternum and metasternum also dark, with the pale spots ontside of cosir. Legs pale ycllow, inclining more or less to brown; coxie dark at base, pale at tip; trochanters pale; front and middle femora spotted more or less conthently on the outside with brown; hind femora, of dark brown, cxcept at tips and hase; of sotted only; tibie ringed with hrown at base; tarsi marked more or less with brown, especially at tip. Hemelytre either colorless, transparent and prismatic, or distinctly tinged with dingy jellow; shallowly punctate and very finely pmbescent, the reins of corim and clasns dingy yellow, with brown streaks, the more constant of these streaks being two on posterior margin of corinm, and one at the tip of clarus. Abdomen, of tergum piceons, with the sutures and sides of some of the joints rarely paler; renter piceons, minutcly and regularly covered with gray pubescence: q sutures and spots on tergum more often pale; renter dingy ycllow, excep at base; of paler than δ, and generally larger. Average length 0.13 inch $\left[=3.2^{\mathrm{mm}}\right]$.

Larra.-Dingy yellow, with more or less distinct longitudinal dark lines, especially on head.

Pupa.-Same color, with more distinct red and brown longitudinal lines, and two little tooth-like, pale yellow processes at inner base of hemelytra pads, indicating the wings; the abdomen paler than the rest of the body.

Described from numerons specimens. I have some, especially males, in which the black so predominates that the paler parts of the head and thorax are scarccly traceable, while in others again the pale parts predominate almost to the exclusion of the black. Indeed, so variable is the species that it is difficult to see wherein some of the specimens differ from the European thymi, or from N. angustatus Uhler, and it is barely possible that future comparison will show specific identity between some or all of the three. But as long as authors fail to give the variation a species is liable to, or the number of specimens a description is drawn up from, it will remain impossible to decide such questions satisfactorily, and I name destructor at the suggestion of our Hemipterist, Mr. P. R. Uhler, of Baltimore, who has examined specimens which I sent linu.-[Fifth Rept., p. 113. Fig. 41.
Mytilaspis pomicorticis, N. Sp.-Eggs-from 30 to 100 under each scale; length scarcely 0.01 inch, irregularly ovoid, nearly thrice as long as wide, snow-white, except just prior to hatching, when they become yellowish. Larea-Length of body 0.01 inch, ovoid, thrice as long as wide, pale yellow, with a darker ycllow spot near each end ; a few short hairs seen around border ; two fine anal sete about half as long as body springing from two lobes between which two spinous hairs are always seen; antennat quite variable, the joints irregular and not easily resolved, sometimes appearing only 6 -jointcd, but more generally 7 -jointed, with a few hairs, two or three at tip the longest and most persistent; legs with a one-jointed tarsus, a feeble claw, and, among other hairs, four more or less distinctly knobbed ones near tip, the two uppermost longest.
δ^{1}-Leugth of body, 0.022 inch $\left[=.5 .5^{\mathrm{mm}}\right]$; color, translucent carneous-gray ; a dorsal transrerse band on each abdominal joint, and portions of the mesothorax and metathorax darker, or purple-gray; the inembers somewhat lighter. Head, sub-triangnlar ; rostrum rudimentary ; ocular tubercles, one each side of it, plainly risible, the eves on the upper surface prominent, dark, and with tew facets : antenne as long as body, 10 -jointed, joints 1 and 2 bulbons and sometimes indistinctly separated; 3-9 about four times as long as wide, slightly constricted; 10 half as long and fusiform; all but basal two with a whorl of about eight hairs, slightly clavate and as long as width of joint. Thorax very large, oval; prothoracic portion narrowing in front, composed of two transverse folds, the anterior one having a transverse row of four dusky dots ; the mesothoracic portion large and elevated, showing three lateral swellings; a well-defined medio-dorsal plate, rounded in front, shallowly-notched belind, with a medio-
longitudinal suture, and a transverse one dividing it in two, the anterior half pale, the posterior darker; the metathoracic portion showing a sub-triangular scutel, and separated from mesothorax by the transrerse hand (apodema of Targioni). Wings about as long as body, arising from base of mesothorax, spatulate, closing flat on back in repose, and appearing whitish, finely and uniformly covered with short, stiff hairs; supported by a bifurcate vein, the bifureation arising from basal fourth, and each fork rmming near and almost parallel with the wing-margins; balancers dark, with the hook quite long. Legs with the middle pair longest, and-from large size of cose -further from front than from hind pair ; the cose and femora large and swollen, the latter with a more or less distinct lobe near the base below; the tarsi one-jointed, with a constriction occasionally indicater, and terminating in a single flexible claw, surrounded by four clubbed hairs; the tibise and tarsi are quite bristly, but on the femora there are usually but two bristles, one abont the midulle above, and one on the basal lobe below; the cose also have one above. Abdomen, seen from above, nearly as long as thorax; appearing shorter from below; o joints onle discerned; the last joint abruptly narrowed into a large tubercle bearing four bristles on the under side, and sending forth the genital armor in the form of an awl-shaped style as long as the abdomen.
of Sale-Larval part golden yellow; the aual shield sellowish-brown, sometimes ruite pale, inclining to white, Hattened, straight, rather more than twice the length of larval scale, increasing in width from tip to end, where it is slightly truncate; attached by a white film; average length, 0.035 inch.

오-Average length, 0.05 inch: color, pale yellow; jug-shaped and flattencd when young, more globular when mature, and twice as long as wide; the cephalo-thoracic portion rounded and entire, but narrower than the abdominal, at the juncture with which it forms a more or less conspicuous lateral projection; on its inferior side is a tubcrele, having two longitudinal ridges, and giving rise to a corneons, filiform proboscis, longer than the body, and composed of tour separate parts; posterior abdominal joints deeply lobed laterally, with two or three blunt, Heshy hairs to each lobe; anal plate gamboge-yellow, corneons, with an irregnlar border, presenting two larger, slightly tri-lobed, median projections, and one or more smaller ones each side, furnished with spinons hairs, two especially between the tri-lobed projections a forenamed ; five more or less complete sets of secretors visible from below, arranged around anus in form of an arc, the median set with normally 10 , the upper laterals 20 , and the lower laterals 14 ; besides these, some six or more blunt tubes, and a series of shorter pointed ones, may be noticed along the horder, and doubtless serve as secretors. (See Fig. 32 b.)

오 Scale-Larval scalc golden-yellow; median scale somewhat darker; anal shield varying from pale brown to deep purplish-gray, and generally of a color with the bark it is upon. The whole scale is otteu incanous, but the hoary film easily rubs off; it averages 0.12 inch in length, but is quite variable in form and size, being either straight or curved, narrow and strongly arched, or broad and flatter, but always rounded at the end; the white inferior lamine at sides sometimes show distinctly from ahove, and give the appearance of a pale border.
The lice, whether ${ }^{t}$ or 9 , vary in appearance according to position and state of maturity. In making the foregoing descriptions and figures, I have taken what appeared the most natural positions, after examination of many specimens. The of ablomen shrinks very much in drying, and the more detailed ρ characters are variable. While the normal number of secretors in the middle set is never more than 10 , I have sometimes found but 8 or 9 ; that of the upper laterals never surpasses 0 , but may be as low as 15 ; while that of the lower laterals is more uniformly 14 , though I have sometincs found 16 , and at others 12 . Opposite sets do not always contain the same num-ber.-[Fifth Rept., pp. 95-96. Figs. 31, 32.

This is the species previonsly known as Aspidiotus conchiformis, or popularly as the Oyster-shell Bark-louse, and the reasons for separating it are given in the report.

Eriosoma dlair, N. Sp.-Culor dark blue. Length to tip of closed wings, exelusive of antenne, 0.12 [inch,$\left.=3^{\text {mm }}\right]$. Wings hyaline, three times as long as wide, and more pointed at the ends than in E. pyri. Costal and subcostal veins, and that bonnding the stigma behind, robist and black. Discoidal veins together with the 3rl forked and stigmal reins, all slender and black, the forked vein being as distinct to its base as are the others, with the fork but $\frac{1}{3}$ as long as the vein itself and curved in an opposite direction to the stigmal vein. Antenne 6 -jointed and of the same color as the body; joints $1,2,4,5$ and 6 of about equal length, joint 3 thrice as long as either. Legs of the same color as body.

The foung lice are narrower and nsually lighter colored than the mature individuals, varying from flesh or pink to various shades of blue and purple.-[First Rept., p. $1 \because 4$.

Professor Thomas (Trans. Ill. St. Hort. Soc., 1876, p. 191) has called it Erisoma Rileyi* because of ulmi being preocenpied by an European species. It belongs to Schizoneura. For subsequent remarks see "Notes on the Aphididse of the United States, ete., by C. V. Riley \& J. Monell," (Bull. Hay̌den’s U. S. Geol. \& Geogr. Surrey, Vol. V, No. 1, p. 3.)

DIPTERA.

Asilus Missouriensis N. Sp.-Alar expanse 1.55 [inches, $=47^{\mathrm{mm}}$] ; length of body 1.30 inches $\left[=33^{\mathrm{man}}\right]$. Wings transparent, with a smoky yellow tinge, more distinct aronnd the veins, which are brown. Head pale rellow, sometimes brownish; moustache straw-yellow with a few stiff black hairs below; beard pale straw-yellow; crown very deeply excavated; hase of the same pale yellow with short, stiff, yellowish hairs, and a crown of black ones near the border; eyes large, prominent, finely reticulated and almost black: antennar, first joint black tipped with brown, cylindrical and hairy ; second joint black, short, thick and rounded at tip, with a few stiff hairs; third joint as long as first, tapering each way, smooth, black and terminating in a long, hrown bristle; proboscis black and nearly as long as face; neek with pale and black hairs. Thorax leaten-black, slightly opalescent with reddish brown at sides, more or less pubescent with pale yellow, especially laterally and posteriorly and in three narrow lougitudinal dorsal lines which gradually approach towards metathorax ; bearded at sides and behind with a few decnrved black bristles, those behind $i_{n t e r s p e r s e d ~ w i t h ~ a ~ f e w ~ s m a l l e r ~ p a l e ~ h a i r s ; ~ s c u t e l ~ o f ~ t h e ~ s a m e ~ c o l o r, ~ w i t h ~ n p w a r d-~}^{\text {wher }}$ enrving, black bristles; halteres brown. Abdomen, đ, general color dull leaden-yellow, with darker transverse hands at insections; the light color produced by a yellowish pubescence and mumerous short close-lying yellow hairs, the dark bands produced by the absencé of this covering at the horlers of eacli segment ; basal segment hroad, bilobed, and with lateral black bristles; segments $6,7,8$ and anal valves with a decided pink tint, especially $7 ; 8$ but one-third as long as 7 above. \circ, broader, flatter, more polished and brassy, with no transverse darker hands, segments 7 and 8 polished black, the latter narrow and longer than any of the others; anus with a few black bristles. Legs, dull purple-brown, with black bristles; thighs very stont, the hind pair rather darker than the others, the two front pair of trochanters with long, yellowish hairs; pulvilli, generally fulvous.

Described from two δ, and two 9 , all captured while sncking honey-bees. I have not access to Loew's descriptions, and cannot therefore compare it with already described species; but specimens have been sent to Dr. Wm. LeBaron, of Geneva, Illinois, and to Baron Osten Sacken, of New York, and both these gentlemen are unacquainted with it, and believe it to be new. In the well marked o specimens, the body bears a general resemblance to that of Trupanea [Promachus] vertebrata, Say.[Second Rept., pp. 122-123. Fig. 89.

Baron Osten Sacken has since placed this as a syonym of Proctacanthus Milbertii Macq. in the second edition of his Catalogne of the described Diptera of North America (1878), 1. 81.
 $\left.12^{\mathrm{mm}}\right]$. Antenne black. Palpi fulvons. Face silvery white. Front silvery, tinted with pale golden-brown, with a broad middle stripe black. Thorax cinereous with imperfect black stripes. Aldomen black and silvery-ash, changing into each other when viewed from different angles. When viewed from above: first segment deep black with a posterior border of silver-ash very narrow in the middle, much widened paterally, but abbreviated at the sides of the abdomen. The other segments with the basal half silvery-ash, terminal half black. Legs black. Fourth longitudinal vein of the wings straight after the angle. Posterior transverse vein arcuate.

Described from numerons bred specimens.-[First Rept., pp. 111-112. Fig. 48.
This species is referred by Osten Sacken to the genns Exorista of Schiner, Lydella not being received as a distinct genus. The name Iydella is used also for a genus of Acarina.

Exorista flavicauda, N. Sp.-Length 0.35 to 0.50 inch [$=8.5-12.5^{\mathrm{mm}}$]. Head broader than thorax : face, silvery-white, the cheeks inclining to yellow, with lateral black hairs extending to near the base of antemne, and one stiffer and longer bristle at top of cheeks; front, dusky, ferrugizous, with two rows of black converging bristles; divided by a broad depressed stripe of a brighter ferruginous color and without bristles; occiput loright ferruginons; labium ferruginous with hairs of same color; maxipalps rufous; eyes dark mahogany-brown, and perfectly smooth; antemie, two basal joints rufons, with black hairs, third joint flattened, dusky, and thrice as long as second; seta, black; entire hinder part of head covered with dense white hairs. Thorax, more decidedly bhe than in lencanic, broder (instead of narrower) in front than behind; the vittae less distinct; scutel of same color as thorax. Abdomen, stout and more cylindrical than in lencanice ; first joint dàrk bluish-gray ; second, light blu-ish-gray, becoming darker along the middle, at sides and at lower border; third joint, like second above, but golden-gray at sides (no rufous) ; last joint entirely yellow or pale orange, with no other color and but few black loristles around anus. Wings more dusky than in leucanire; alulæ, opaque biuish-white. Leys, black; pulvilli pale sellow.
Described from one captured, 4 bred 9 . Space between eyes at occiput fully onethird the width of head.-[Second Rept., 1p. 51-52. Fig. 18.

Tachina [Exorista] phycita, LeBaron-Imago.-Length, 0.20 inch [$=5^{\mathrm{mm}}$]. Antenua black, third joint twice as long as the second; face silvery, without bristles at the sides; sides of the front silvery at the lower part, pale golden above; the middle black vitta occupying a little more than half of the width of the inter-ocular space; frontal bristles contimed down the face to opposite the end of the second joint of antennat palpi blackish-brown; eyes hairy. Thorax black, with the ordinary cinereous stripes scarcely perceptible. Abdomen black, varied with cinereous at the base of the segments; a large fulvous spot on the side of the abdomen occupsing nearly the whole of the side of the second segment, half or more of the thind, and sometimes a suall spot on the first; bristles on the middle as well as at the hind-margin of the second and third segments. Venation of the wings of the usual type; first posterior cell almost closed, before the end of wing ; fourth long vein slightly curved after the angle; fifth long vein prolonged to the margin ; hind cross vein molerately simuous. Tarsal claws and pulvilli unusually long.

Female? A single specimen, a very little larger than the others, was obtained from the same lot of leaf-crnmplers, whith possibly may be the of of the same species. It differs as follows: Front broader; antemne dark brown ; the cinereous markings of the body more distinct; the tip of abdomen fulrons, but without the fulvous spot at the sides; and with the tarsal claws of ordinary length.

This species appears to belong to the subgenus Exorista of Meigen, closely allied to Tachima proper, and differing from it chiefly in having the cyes hairy, and in the presence of bristles on the middle, as well as at the hing margin of the second and third abdominal segments, whereas Ttehinu has ouly the latter.-[Fourth Rept., p. $40-41$.

This species was simultaneonsly published by Dr. LeBaron in his $2 d$ Rept. Ins. Ill., p. 123. It is retained in Exorista by Osten Sacken.
Anthomya zeaf of, N. Sp. (Pl. ©, Fig. 24). Length 0.20 [inch, $=55^{\text {mm }}$] ; alar expanse 0.38 [inch, $=9.5^{\mathrm{mm}}$]. Antemne black; style mieroscopically pubescent ; front, fulvous, with a distinct, rather uarow, brownish, cinereous margin; face and orbits brownish-white; palpi and proboseis black; ocellar area somewhat heart-shaped; thorax and abdomen palc yellow-brownish cinereons, with minnte black points at the insertion of the bristles; thorax with au indistinct middle stripe of brown; legs black, tinted with cinereous; poisers pale ochre-yellow ; scales small, the upper valve larger than the lower.-[First Rept., p. 155. Figs. 86, 87, and Pl. II, Fig. 24.

Anthomya radicum (Linn.) var. Calopteni-Egg-Oval, smooth, white, 0.04 inch long.

Larva-Skin unarmed, 0.24 inch $\left\lceil=6^{\mathrm{mm}}\right]$ long when extended, of the normal form, the mandibular hooks black, quite conspicuous, and diverging at base. Prothoracic spiracles elongate. Anal spiracles minute, yellowish-brown, with the 8 fleshy surrounding tubercles, small.

Pupa-Pale-brown, rounded at each end, with the prothoracic spiracles and lips anteriorly, and the anal spiracles and lower tubercles posteriorly, showing as minute points.

Imago- . Average expanse 0.4^{2} inch $\left.L=12^{m m}\right]$. General color aslı-gray with a ferruginous hue, especially above, and a more or less intense metallic reflection. Face with white reflections below; eyes smooth, brown, encircled by the ground color, and this behind and on forehead bordered by a brown line ; 2 similar lines at back of head from upper corners of eyes and approaching to neck : forehead dusky-brown. becoming bright gellowish-red toward base of antenne, and the brown forking at right angles around occiput. Trophi and antenn: black, the style simple and somewhat longer than the whole antennie. Thorax with three dusky longitudinal lines, obsolete behind; legs black, with cinereous he beneath: wings faintly smoky, with brown-black veins, the discal cross-vein straight and transverse, the outer one bent and more oblique; balancers crumpled, yellowish. Abdomen with faint dusty mediodorsal spots, broad at base, tapering and obsolescing toward end of each joint.

In the ${ }^{\boldsymbol{d}}$, aside from the larger eyes, stronger bristles, and narrower, less tapering abdomen with its additional joint-all characteristic of the sex-the face is whiter, and the medio-dorsal dark mark of abdomen continnons.

Described from 25 specimens of both sexes, reared from locust-egg-feeding larrae.
Specimens bred from cabbage and radish roots, and others in my cabinet taken from the burrows (made in Osage Orange in Missouri) of Crabro stirpicola Pack. ; do not differ specifically.-[Ninth Rept., p. 95.

For further details see First Rept. of the Commission (pp. 285-9), where the species is shown to be the Anthomyia angustifrons of Meigen.

ORTHOPTERA.

Caloptexcs atlanis N. sp.-Length to tip of abdomen $0.70-0.85$ inch $[=17.5-$ $\left.21^{\mathrm{mm}}\right]$; to tip of closed wings $0.92-1.05$ inches $\left[=23-26^{\mathrm{mm}}\right]$. At once distinguished from femur-rubrum by the notched character of the anal abdominal joint in the male and by the shorter, less tapering cerci ; also by the greater relative length of wings which extend, on an average, nearly one-third their length beyond the tip of the abdomen in the dried specimens: also by the larger and more distinct spot on the wingsin all which characters it much more closely resembles spretus than femur-rubrom.

From spretus, again, it is at once distinguished ly the smaller size, the more distinct separation of the dark mark running from the eyes on the prothorax and of the pale line from base of wings to hind thigh; also by the anal joint in the δ, tapering more sindlenly and by the two lobes forming the notch being less marked. From both species it is distinguished not only by its smaller size but by the deeper, more livid color of the dark parts, and the paler rellow of the light parts-the colors thus more strongly contrastiug.
$6 J^{\prime} s, 9$'s from New Hampshire. Just as the trpical femur-rubrum is at once distinguished from the typical spretus by the characters indicated; so Atlanis, though structurally nearer to spretus, is distinguished from it at a glance by its much smaller size and darker, more marbled coloring. The contrast is all the greater in the living specimens, and I have scen no specimens of spretus that at all approach it in these respects.

Whether this is the femur-rubrum as defined by DeGeer or by Harris, it is almost impossible to decide, though Harris's figure of femur-rubrum better represents it than the true femur-rubrum, as subsequently defined by Thomas, and as found in Illinois and Missouri.-[Seventh Rept., pp. 169-170.

For further details and structural differences between it and C. spretus see First Report of the Commission.

LIS'T OF DESCRIPTIONS OFADOLESCENTSTATES.

In making out the following list of descriptions of adolescent states, etc., that appeared in the Reports, the nomenclature there used is retained. Unless otherwise stated the insects, in the particular states indicated, were at the time unknown or undescribed, the descriptions first appearing in the Reports. Those published in connection with the preceding descriptions of new species are omitted here:

HYMENOPTERA.

Nematus ventricosns; lara: LX, 21. (Previously described by several writers.)
Pristiphora grossularie ; lorra: IX, 26. (Description quoted from Walsh.)
Emphytus maculatus; larea and pupa: IX, 28-29. (Previously described by me in the Prairie Farmer, May 25, 1-67.)
Lophytus abbotii ; iarva: IX, $3 \geqslant$.
Lophyrus lecontei ; larra: IX, 33. (This and abbotii hoth partially described by me in the Prairie Farmer, November 10, 1866; May 25, 1867; May 2, 1863, and in the Prairie Farmer Anmual, 1869.)
Tiphia inoruata; larva: VI, 126.

COLEOPTERA.

Harpalus (probably herbivacus Say) ; larea: IX, 97.
Harpalid; larva; I, 59.
Mysia 15-punctata; larva: IV, 19.
Chilocorus bivulnerus; lara and mua: I, 16.
Hippodamia convergens; larra and pupa: I, 11?. (Previonsly mentioned in the Am. Ent. I, 46, and elsewhere.)
Coccinella picta; larva: V, 101.
Passalus cornutus; larva and pupa: IV, 140-141. (Previously mentioned by Burmeister and by Walsh.) ; egg: V. 55.
Lacinosterna que rcina; egg: V. 55.
Peliduota punctata ; larva and pupa: III, 78-79. (First described by me in Am. Ent. II, 295.)
Telephorus bilineatus ; larva: IV, 30. (First described by Packard.)
Chauliognathus pensylvanicus: larea: I, 57. (Qnoted from the Am. Ent. I, 35.)
Chrysobothris femorata; eggs: VII, 73: larva, I, 46. (Previonsly described by Fitch and others) ; eggs, larra, and pupa: VII, 73.
Siuoxylon basilare; larva aud pupa: IV, 54.
Corynetes rufipes; larva and pupa: VI, 101, 102.
Prionus laticollis; larva: I, 126; larva and pupa: II, 87; egg: V, 56. laticollis.)
Saperda livittata ; pupa: I, 43. (Previously described by Harris.)
Lema trilineata; larva and pupa: I, 99. (From the Prairie Farmer ; and the Am. Ent. I, 26. Previously described by Harris and others.)
Doryphora juncta; lara: I, 106. (First described in the Am. Ent. I, 43.)
Doryphora 10-lineata ; eggs and larra: I, 105. (From the Am. Eut. I, 43. Previously described by me in Prairie Farmer Aug. 8, 1863.

Colaspis flavida; letra: III, 84, and IV, ©4.
Coscinoptera dominicana: eggs and tarva: VI, 122, 130.
Haltica chalybea; lara and pupu: III, 81. (Quoted from Am. Ent. II, 3:2. The larva first described by Packard, Guide, f. 507.)
Blepharila rhois; egg, laria and pupa: VI, $1 \because 1$.
Cassida bivittata: lara and pupt: II, 61. (First dessribed by me in the Prairitu Farmer Aunual for 1808, 1. 53.)
Cassida aurichalcea; eg刀: II, 60; luviu and pupa: II, 62. (Previously described by Harris.)
Cassida pallida; 7urva: II, 6?.
Cassida guttata; larru aurl pupa: 1I, 63.
Cassida nigripes; larva ant pupa: II, 63, 64.
Bruchus pisi : rgy: III, 47.
Tenebrionid!; lara: VI, 113. (Previously described as the larva of Eupsalis by Harris.)
Eupsalis minnta; larra and pupa: VI, 115, 116. (The pupa first described by Harris.)
Conotrachelus crategi ; larra and pupa: III, 39.
Baridius trinotatus; larva and pupa: I, 95. (From the Am. Ent. I, 22.)
Anthonomus 'pualrigibbus; egg: III, 31; lavéa and pupa: III, 35.

LEPIDOPTERA.

Papilio philenor; lar'a and pupa: II, 117. (Previonsly described by Smith and Abbot, and by Boisduval and Le Conte; also by Harris in Ent. Corr.)
Pieris protodice; larva and pupa: II, 104. (Published simultaneonsly in the Am. Ent. II, 7\%.)
Pieris rapie: larct aul pupa: II, 108. (Previously described ivy varions authors.)
Danais archippus; egg: III, 144.
Limenitis disippus; egg and larva: III, 154. (The mature larva previously described by various authors.)
Apatura lycaon; egg, larva and pupa: VI, 146, 147. (The larra and pupa badly described by Bgisd. \& Lec.)
Apatura herse : egy, larca and pupa: VI, 14s. (The larva and pupa badly described by Boisd. \& Lec.)
Paphia glycerium ; larva and pupa: II, 127. (First published by me in Am. Ent. II, 123); egg and farial changes: V, 146.

Megathymus ruce:e ; egg, larva and laval changes: VIII, 174, 181. (First published by me in Trans. St. Louis Ac.) ; IX, 129.
Chcerocampa pampinatrix ; egg, larra and pupa: II, 71, 72. (Previously described, except egg, by various authors.)
Philampelus achemon; young and full grown larro and pupa: II, 74, 75. (Previously described by various authors.)
Philampelus satellitia; eggs, young and full grown larca, and pupa: II, 76-\%8. (Previously described, except egg, by various authors.)
Sphinx $\overline{5}$-maculata; larra pupa: I, 95. (From the Am. Ent. I, 23; previously described by several anthors.)
Thyreus Ablotii; larra and pupa: II, 78, 79. (Previously described by various authors.)
Deilephila lineata ; two forms of Tarva: III, 141, 142. (Previously described, but not in connection. Quoted from the Am. Ent., II, 259.)
Fgeria acerni; laria and pupa: VI, 110.
Egeria rubi; larra: VI, 113.
Psjchomorpha epimenis; larra and pupa: III, 64, 65; VI, SE. (First described as the possihle larra and pupa of Eud. unio, Am. Ent. II, 152 and in 1st Rept., p. 84.)
Endryas grata; eggs, lava and mupa: II, 83; VI, 83, 90. (The larva previously described by Harris and others.)

Eudryas mio; larva and pwpa: VI, 92. (First described by Lintner.)
Alypia octomaculata; larea: I, 136, (previonsly mentioned by Fitch); II, 80, published simultaneously in the Am. Ent., II, 151, (previously described in Marris' Corr.) ; VI, 94.
Procris americana; larra and pupa: II, 86. (First described by Harris.)
Callimorpha fulvicosta: larra: III, 134.
Spilosoma virginica; laren and mum: III, 69. (Previously described by various authors.)
Hyphantria textor; lara: III, 132. (First deseribed by Harris.)

- Eepantheria scribonia ; larra: IV, 143 . (Previously described by other authors.)

Bombyx mori ; rgg and larra: IV, s6. (Previonsly well known.)
Attacns cecropia; larral changes: IV, 106. (Quoted from the Am. Ent. II, 100.)
Attacns eynthia; lorval changes: IV, 117. (Previonsly described by other anthors.)
Attacus promethea; laval changes: IV, 121. (Partially given by other authors previously.)
Attacns luna; larval changes: IV, 124. (Previously given by Lintner.)
Attacus polyphemus; larval changes: IV, 126.
Attacus yama-maï; larral changes: IV, 132. (Previously described by other authors.)
Attacus pernyi; egg, lorra, and cocoon: IV, 137. (Previously deseribed by other authors)
Hemileuca maia; cgg and lural changes: V, 123, 129. (Previously described by Lintner.)
Hyperchiria io; larval changes: V, 135 . (Previously given by Lintner.)
Anisota rubicunda; eggs and larnal clunges: V. 138.
Acronycta oblinita; larva and $m^{\prime \prime} p a$: III, 71. (The larva first figured by Smith \& Abb.)
Acronyeta xylinoides; larva: V, 126.
Amphipera pyramidoides; larva and popo: III, 73, 74.
Lencania mipuncta; lorva and pmpa: II, 49 : VIII, 33, and lorva: II, 55 (previously described l,y various authors) ; pgg: VIII, 34 ; egg and larval changes: VIII, 184, 185.
Gortyua nitela; laru: I, 9:. (From the Am. Ent., II, 22. Briefly described by Har ris, Treatise, p. 440 ; but first identitied by me in the Prairie Farmer.)
Agrotis inermis; lurra and pupa: I, 74.
Agrotis cochranii ; larra and prop: I, 76. (First described by me in the Prairie Former, June 22, 1867.)
Agrotis clandestina; larea and pmpa: I, 79. (Previously mentioned by Harris.)
Agrotis telifera; larva and $p^{m p a: ~ I, ~ 81 . ~(D e s c r i b e d ~ b y ~ m e ~ i n ~ t h e ~ P r a i r i e ~ F a r m e r, ~ J u n e ~}$ 22,1364 ; and previonsly described in Europe, where the species also oceurs and is known as A. ypsilon.)
Agrotis subgothica; lerro : I, 82.
Agrotis jaculifera; larve and pmpo: I, 83.
Agrotis devastator ; larro and pupa: I, 84.
Hadena subjuncta; larra and $\mathrm{m}^{2} \mathrm{pa}$: I, 85.
Celiena renigera; larva and pupa: I, 86.
Prodenia commelina; larra: I, 88 ; III, 114 (from Am. Ent., II, 363). [Sce Notes.]
Anisopteryx vernata; lara and pupa: II, 95-97 (previously described by other authors); egg*, lerro and $1 m p a:$ VII, $8: 2$ (and $86-87$, adapted from Mann); Paleacrita vernata, VIII, 13-17 (from the Trans. St. Louis Acad.)
Anisopters pometaria; cggs: II, 94-95 (the two species confonnded) ; eggs, larva and pи"u: VII, 84 (and 86-87, adapted from Mann); VIII, 13-17 (from the Trans. St. Louis. Acad.)
Eufitchia ribearia; egg, lorva and pmpa: IX, 3.4. (The larva first described by Fitch.)
Phacellura nitidalis; lave: II, 67.
Asopia costalis; larra and prpa: VI, 106. (The larva mentioned by Harris, but first described by Walsh in the Proc. Ent., and first bred and determined by me, Prairie Fermer, April 20, 18iテ.)

Phycita nebulo: lari"d and I'" $^{\prime \prime \prime}$: IV, 41. (The larva first described by LeBaron.)
Pempelia grossularite larm and pupa: I, I41. (Larva previously deseribed by Fitch and by Packard.)
Tortrix rileएtaua; letre and pupa: I, 15 H .
Anchylopera tragratu; lum: I, 143. (First described in the Am. Eut., I, 90.)
Penthina vitirorana: lerte amt pena: I, 13.5. (The larva first described, but not identitied, by Rathi゚on.)
Carpocapsa pomonella; lated and pupa: I, 63. (Preriously described by various anthors.)
Walslsia amorplella; larru and $\mu^{\prime \prime \prime} p a$: II, 133.
Bucculatris ponifoliella: lura and pupu: IV, 51 . (Larra previously described by Clemens.)
Eta compta; larta and pupu: I, 152.
Pterophorns periscelidactylus; letre and pupu: I. 1:37; III. 66. (Previonsly described by Fitch.)
Pterophorus carduidactylus; larva and pupa: I, 1=0.
Promba succasella; lerte: V, 155; pupa, VI, 131 (from Trans. St. Louis Acad.) ; egg, VI, $1: 33$ (from $A m$. Net.).
Orgyia lencostigma; eggs, larta and pupa: I, 144-146. (Previously described by others.)
Thyridopteryx ephemerieformis; eggs, lara and pupa: I. 148, 149. (Previonsly described by others.)
Hematopis grataria; eggs, lerea and pupa: I, 179.
Galleria cereana ; larca and pupa: I, 166. (Previously described by other anthors.)

HEMIPTERA.

Strachia histrionica; eggs, larca and pupa: IV, 37.
Micropus lencopterus; egg, laval stages and pupa: VII. 21.
Cicada septemdecim: cgg and young larva: I, 25. (The eggs previously described by several writers.)
Pœciloptera pruinosa ; eggs: V, 122.
Ceresa bubalus; eggs: V, 121.
Mytilaspis pinifolise; eggs and larea: V, 93. (First mentioned by LeBaron.)
Phylloxera rileyi; larva and pupa: VI, 64, と6; VII, 120.
Phylloxera vastatrix; various forms: VI, 66 (previously described eIsewhere and by others) ; impregnated egg: VIII, 159. (Previonsly described by me in the Trans. St. Louis Acad. for Oct. 18, 1-75, and independently by Balbiani in the Comptes rendus de l'Ac. (1. Sc. Paris for Oct. 4, 1875.)
Eriosoma prri: lara: [, 120. (From the Am. Ent., I, 2 ; previonsly described by several anthors.)

DIPTERA.

Tabanns atrat's: larea ant pupa: [I, 13', 1:31. (Previously described, but not specifically identified, hes Wralsh.)
Erax bastardi; lared and pupa: II, 124.
Bombyliid ; larta: IX, 96.
Pipiza radicum; lara and pupa: I, 12.. (Quoted from the Am. Eut., I, \&4.)
Anthomyia zee: larea and pruetrium: I, 155.
Meromyza americana; lerce aut pupa: I, 160.
(Estrus ovis; larea and puparium: I, 152. (Frevionsly described by other anthors.)

ORTHOPTERA.

Mantis carolina ; eggs and lara: 1, 17()-1\%1. (Previously described by several authors.) Ecanthus nivens; eggs: V, 120. (Previonsly described as egge of Ceresa bubulns by Fitelı.)

Orchelimum glaberimam; cgga: V. 123.
Phaneroptera curvicanda; eggs: V, 124, and VI, 165; larva and pupe: VI, 166.
Microcentrus retinervis; eggs: V, 123; VI, 155 (previonsly described as egs- of I'atypliyllum by Harris) : larta and pupe: VI, 161.
Phylloptera oblongifolia; egys: V, 123. (see Microcentrus.)
Platyphellum concavun: eygs: V, 124; VI, 167.
Caloptenus spretus; cggs aud egg-mass: IN, $8=, 59$: 7urcu ant pupu: VII, 199.

NELROPTERA.

Corytalus cornutus; lurtu and pupa: V, 143, 144 (Previously describer by Haldeman); eggs and egg-mass, and young larca: $\mathrm{IX}, 127$.

LIST OF DESCRIPTIONS, MOSTLY AMPLIfied, OF SPECIES NOT NEW.

The following list includes the species, already known, of which a complete redescription of the adult is given in the Reports, either because the original description was in a foreign language, or not easily accessible, or of one sex only, or for other reasons.

HYMENOPTERA.

Tiphia inornata Say: VI, 126.
Crsptus extrematis Cress.: IV, 111.
Pezomachus minimus Walsh: II, 59. (From Walsh.)
Ophion purgatus Say: II, 53.
Mesochorus vitreus Talsh: II, 52. (From Walsh.)
Pimpla annulipes Brullé: V, 49.
Macrocentrus delicatus Cress. : V, 50.
Microgaster militaris Walsh: II, 52. (From Walsh.)
Chalcis marise Riley: IV, 110. (From the Am, Ent., II, 101-102.)
Isosoma vitis Sauders: II, 93. (From Saunders.)
Antigaster mirabilis Walsh: VI, 163. (From the Am. Ent., II, 169-170.)
Pristiphora grossmlarise Walsh: IX, 26-27. (From the Prac. Ent., I, 123.)
Nematus ventricosus (Klug): IX, 22. (From the Prac. Ent., I, 120-121, and the Am. Ent., II, 16-17.)
Emphytus maculatus Nort. : IX, 28.
Lophyrus LeCoutei Fitch: IX, 33.

COLEOPTERA.

Doryphora 10-lineata Say, var. : IX, 40.
Sphenophorus zere Walsh: III, 59. (From Walsh.)
Scolytus carya Riley: V, 107. (Female first described in Prairie Farmer Feb. 2, 1867.)
[See Notes.]

LEPIDOPTERA.

Apatura lycaon (Fabr.): V'I, 144.
Apatura herse (Fabr.): VI, 144.
Megathymus yuccie (Walk.) : VIII, 175-176.
Egeria polistiformis Harr.: III, 76.
Ægeria acerni Clem.: VI, 110.
Prodenia antumualis Riley: III, 116-117. (From Am. Ent., II, 365.) [See Notes.]
Leucauia mipuncta Haw. : II, 56.
Lencania albilinea Guen. : IX, 56-57.
Acronycta oblinita Sm. δ \& Abb. : III, 71.
Amphipyra pyramidoides Guen. : III, 74.
Celiena renigera Steph.: I, 86.
Hatena subjuncta Gr. \& Rob.: I, 85.
Noctua claudestina Marr: : I, $\mathbf{7 9}$.

Agrotis inermis Harr. : I, 74.
Agrotis coclıranii Rilcy: I, 75.
Agrotis telifera Harr. : I, 81.
Agrotis jaculifera Gucu.: I, \&3.
Anisopteryx pometaria Hur.: Vl[I, 15-17. (From the Trans. St. Louis Acad. Se.)
Palcaerita vernata (Peck): VIIT, 15-1\%. (From the Trans. St. Louis Acad. Sc.)
Asopia eostalis (Fab.) : VI, 107.
Pempelia grossularixe (Pack.) : I, 141.
Walshia amorphella Clem.: II, $13: 3$.
Penthina vitivorana P'ack.: I, 135.
Euryptychia sa igncana Clem.: II, 134. (From Clemens.)
Tortrix rilcyana Grote: I, 154.
Walshia amorphelĩa Clem. : II, 133.
Holcocera glandulella Ritey: IV, 14.. (From the Can. Ent., IV, 13-19.)
Pronuba yuccasella Riley: V, 150, 151, 155; VI, 1:31-1:3. (Both from the Trinas.
St. Lonis Acad. Sc.)
Eta eompta C'lem. : I, 1\%3.

HEMIPTERA.

Micropus lencopterus (Suy): VII, 21, 22.
Mytilaspis pinifoliee (Fitch): V, 99.
Eriosoma pyri (Fitch): I, 120.
Plyylloxera vastatrix I'lanchon: VIII, 159 (From Trans. St. Louis Acad. Sc.) ; VI, 66-67; VII, 93, 99.
Plỵlloxera Rileyi Licht.: IV, 66; VI, 64, $86 ;$ VII, 118-120.
Phylloxera carya-gummosa Riley: VII, 11s. (Erom the Comptes Lirndus, Paris Acad. of Sci., Dce. 14, 1874.)
Phylloxera carye-ren Ritey: VII, 118. (From the Comptes Remlus, Paris Acad. of Sci., Dec. 14, 1874.)
Phylloxera caryeffallax Ritey: YII, 113. (From the Conntes Renlus, Paris Aeat. of Sci., Dec. 14, 1874.)

DIPTERA.

Erax bastardi Macq: II, 124.
Pipiza radicum Walsh of Liley: I, 121-122. (From the Am. Ent. I, 83-84.)
Exorista lencanice Walsh: II, 51. (From Walsh.)
Tachina bifasciata (Fubr.): V, 140.
ORTHOPTERA.
Caloptenus femur-rubrum ($D e G$.) : VII, 126-128.
Caloptenus atlanis Riley: VIII, 117.
Caloptenus spretus (Thos.) : VII; 128-132; VIII, 11\%.

ACARINA.

Hoplophora aretata Filey: VI. 81. (From Trans. St. Louis Acad., III, 216.)
Tyroglyphus phylloxerie Riley of Plumehon: VI, 81. (From Trans. St. Louis Aead., III, 215.)

7 MO

LIST OF ILLUSTRATIONS.

The illustrations in the Reports were prepared at the author's expense, neither the State nor the Board of Agriculture making any provision therefor. The wood-engraving was done for the most part in St. Lonis, bs either Wm. Macwitz, Emile Lampe, or Wittemberg \& Sorber. Some of it was done by Van Ingen \& Snyder, of Philadelphia. A few of the later illustrations are by photo-engraring, and Figs. 50- 52 of the Sth Report show the first attempt to combine this process with lithography. In the following list, all drawings were made from nature by the author unless otherwise stated, and when the figure is enlarged the natural size, unless otherwise apparent or stated in this list, will be found indicated in hair-line. The nomenclature of the Reports is retained.

REPORTI.

Plate I. (Drawn by D. Wiest and lithographed by Bowen \& Co., Philadelphia.)
Fifi. 1. Unarmed Rustie (Agrotis inermis Harr.), moth.
Fis. 2. Variegated Cut-worm (Agrotis incrmis IIarr.).
Fig. 3. Variegated Cut-worm (Agrotis inermis Harl.), head, enlarged.
Fig. 4. Variegated Cnt-worm (Agrotis inermis Harr.), one joint, enlarged.
Fig. 5. Climbing Uut-worm Moth (Agrotis acandens Riley), wings spread.
Fif. 6. Climbing Cut-worm Moth (Agrotis scandens Riley), wings elosed.
FiG. 7. Climbing Cut-worm (Agrotis scamdens Riley).
Fis. E. Lanee Rustic (Agrotis telifera Harr.), moth.
Fig. 9. Greasy Cnt-worm (Agrotis telifera Harr.).
Fig. 10. Greasy Cut-worm (Agrotis telifert Harr.), head, enlarged.
Fif. 11. Dart-bearing Rnstie (Agrotis jaculifera Ginen.), moth.
Fic. 12. Prodenia commelinre, sm. \& Abb., one joint of larva enlargea.
Fic. 13. Clandestine Owlet Moth (Noctua clandestina Marr.).
Fig. 14. Subjoined Hadena (Hedena subjuncta Gr. \& Rob.), moth.
Fig. 15. Speckled Cut-worm (Hadena subjuncta Gr. \& Rob.), head, eularged.
Fig. 16. Speckled Cut-worm (Hadeua subjuncta Gr. \& Rob.), one joint, enlarged.
Fig. 17. Speckled Cint-morm (Iudena subjuncta Gr. \& Rob.), anal joint, enlarged.
Fif. 18. Eight-spotted Forester (Alypia octomaculata, Fabr.).
Fif. 19. Grape-vine Epimenis (Psychomorpha epimenis, Drury), larva. (Mentioned on p. 136, but first named in the $3 d$ Rept., p. 63.)

Plate II. (Drawn by D. Wiest and lithographed by Bowen \& Co., Philadelphia.)
Fig. 1. Solidago Gall Moth (Gelechia gallesolidaginis Riley), wings expanded.
Fif. 2. Solidago Gall Moth (Gelcehia gallasolidaginis Riley), wings elosed.
Fig. 3. Walnat Tortrix (Tortrix rileyana Grote), wings expanded.
Fir. 4. Walnut Torrix (Tortrix riteyana Grote), wings elosed.
Fit. 5. Solidago Gall Moth (Gelechia gallesolidaginis Riley), larva swollen by the coeoons of the Inflating Chaleis-fly within.
Fif. 6. Inflating Chalcis-fly, enlarged.
Fifi. 7. Hemiteles (?) cessonii Riley, enlarged.
Fif. 8. Enrytom bolteri Riley; male aatenna, enlarged.

Fig. 9. Eurytoma bolteri Riley; female, enlarged.
Fig. 10. Bag of Bag-worm (Thyridopteryx ephemeraformis steph.), cut to show the cocoons of Hemiteles (?) thyridopterygis.
Fig. 11. Hemiteles (?) thyridopterygis Riley, female.
Fig. 12. Atmiteles (?) thyridopterygis Riley, male.
Fig. 13. Thistle Plume (Pterophorns corduiductylus Riley), moth.
Fig. 14. Thistle Phme (Ptcrophorus carduiductylus Riley), chrysalis.
Fig. 15. Grape-vine Plume (Pterophorus perisceliductylus Fitch), noth.
Fig. 16. Grape-vine Plume (Pterophorus perisectiductylus Fitch), ehrysalis.
Fig. 17. Gooseberry Fruit-worm Moth (Pempelia grossularie l'ack.).
Fig. 18. Chickweed Geometer (Ifrmetopis giataria, Fabr.), moth.
Fig. 19. Chickweed Geometer (Ilematopis grataria, Fabr.), larva.
Fig. 20. Chiekweed Geometer (Hematopis grataria, Fahr.), pupa.
Fig. 21. Chickweed Geometer (Hematopis yrutaria, Fabr.), eggs.
Fig. 22. Ailanthus worm (CEta compta, Clem.), moth, with spread wings.
Fig. 23. Ailanthns worm ($(E / a$ comptu, Clem.), moth, with elosed wings.
Fig. 24. Seed-corn Maggot (Anthomyia zect Riley), fly, enlarged.
Fits. 25. Raspberry Ceometer (Aplodes rubitora Riles), moth.
Fif. 26. Strawberry Leaf-roller (Anchylopera fraguriet Walsh \& Riley), moth, enlarged.
Fif. 2\%. Strawberry Leaf-roller (Anchyopera fiagariet Walsh \& Riley), moth, natural size.
Fif. 23. Americau Meromyza (Meromyza amoricana Fitch), tyy, enlarged.
Fig. 29. Grape-berry Moth (I'cuthina citioorana Pack.), moth, enlarged.
Fig. 30. (trape-berry Moth (l'onthina ritiorerna Pack.), moth, natural size.

WOOD-C"TS.

Fig. 1. Harris's Bark-louse (Aspidiotus Furrisii Walsh).
Fiti. 2. Oyster-shell Bark-louse (Aspidiotits conchiformis, Gmélin).
Fig. 3. Oyster-shell burk-louse (Aspidiotus conchiformis, (imélin). 1, egg (natural size scarcely .01.) 2, larra, as it appears wheu rumning over the twigs (natural size .01.) 3, its appearauce after beeoming fixed. 4, appearance of scale after the second plate is formed. 5, form of lonse (ventral view) soon after losing its members. 6, form of lonse (ventral view) when full grown and just about to deposit. 7 , fully formed scale, containing louse, as it appears from the under side when raised. 8, highly magnified antenna of larra, showing joints.
Fig. 4. Twice-stabbed Latybird (Chilocorns birnmerns Muls.). [From the Practic a Entomoloyist.]
Fig. 5. Twice-stabbed Ladylird (Chilocorus birulnerus Muls.), larva.
Fig. 6. Seventeen-year Cicada (Cicada scptcmiceim Linu.). A, д of typical form: c, d, genital hooks; g, singing apparatus. B, δ of the small form (chssinii); e, f, genital hooks.
Fif. 7. Seventeen-year Cicada (Cicada soptemdecim. Linn.). a, pupa; b, cast pupa shell ; c, imago; d, pmetured twig : e, two eggs.
Fif. 8. Seventeen-sear Cieada (Cicada stptemdecim Linn.), galleries made by pupa; a, front view, c, orifice; b, section, c, pupa awaiting time of change, d, pupa ready to transform.
Fig. 9. Twig punctured by the Seventeen-year Cicada (Cicada septemdecim Linn.).
Fig. 10. Twig healed after the puncture of the Seventeeu-sear Cicada (Cicald septemdecim Lim.).
Fig. 11. Thirteen-sear Cieada (C'icada tredcim Linu.), newly hatched larva.
Fig. 12. Stizus graidis Say, 8 .
Fig. 13. Seventell-year Cicada (Cicada septemdecim Limm.), side view of if to show beak, a, and ovipositor, b.

Fig. 14. Round-headed $A_{\text {plple-tree }}$ Borer (Saperda bivittata Say). a, larva; b, pupa; r, imago.
Fif. 15. Flat-healed Apple-tree 13 rer (Chrysobotheis femmata, Fabr.), larva.
Fig. 16. Flat-headed Apple-tree Borer (Clurysobothris femorata, Fabr.), imago.
Fifi. 17. Peach-tree Borer (Eleria cxitiosa Say) ; 1, 우 2, 〕.
Fig. 10. Plum Curculio (Conotrachelus uenuphar, Herlst); a, larva; b, pupa; c, imago; d, plum and curculio, natural size, the plum bearing one of the punetures.
Fif. 19. Pemsylvania Soldier-beetle (Chaulinguathus pensyleanious, DeGeer). a, larva, natural size; b, head and first segment eularged ; c, under lip (lebium); d, upper lip (labrmm) ; e, leg; f, left lower jaw (maxilla) ; g, antenna ; h, left upper jaw (mandible).
Fıg. 20. Lacewing (Chrysopa sp.) ; a, eggs ; b, larva; c, eoeoon, the upper figure showing the lid; d, imago. [a, b, d after West wood.]
Fug. 21. subangular Ground-beetle (Aspidoglossa subangulata Chaul.).
Fig. 20. Carabid larva. A, natural size; B, under side of head, enlarged; c, mandible ; e, antenna; f, labium and labial palpi; g, maxilla and its palpi ; h, joint 12 bencath; i, joint 11 beneath ; j, joints $4-10$ each beneath-enlarged.
Fig. 23. Penusy!vania Ground-beetle (Harpalus pensylvanicus, DeGeer).
Fig. 24. Codling-moth (Carpocapsa pomonclla, Limn.) a, apple showing the work of the larva ; b, point of entrance of the larva; d, pupa ; e, larva; f, g, moth : h, head of larva; ; cocoon.
Fig. 25. Pupa of Cut-worm in earthen cell. [After Curtis.]
Fig. 26. Dark-sided Cut-worm (Agrotis Cochranii Riley). a, larva; b, moth.
Fit. 27. W-marked Cut-worm (Noctua clandestina llarr.).
Fig. 28. Lance Rustic (.Igrotis telifera Harr.), moth.
Fig. 29. Gothie Dart (Agrotis subgothica, Haw.), moth.
Fig. 30. Glassy Cut-worm (Agrotis devastator, Brace). Lower higure represents the side of one of the middle segments.
Fif. 31. Figure 8 Minor (Celonu renigera Steph.). a, moth; b, larva.
Flg. 3?. Mierogaster militaris Walsh. [After Walsh.]
Fig. 33. Spined soldier-bug (Arma spinosa Dallas). a, beak magnified; b, bug with right wing spread.
Fig. 34. Fiery Ground-bectle (Culosoma calidum, Fabr.) ; a, larva; b, beetle.
Fig. 35. Potato stalk Borer ((Gortyna nitela Guen.) 1, moth; 2, larva.
Fig. 36. Potato-stalk Borer ('iortyna nitela Guen.) larva.
Fig. 37. Potato-stalk Weevil (Baridius trinotatus, Say); a, larva; b, pupa; c, beetle, (all eularged).
Fig. 38. Potato- or Tomato-worm (sphinx j-maculata Haw.). A, larva; B, pupa; (moth. [After Harris.]
Fig. 39. Striped Blister-beetle (Lytta rittata Fabr.). [From Practical Entomologist.]
Fig. 40. a, Ash-ronray Blister-beetle (Lytta cinerca Fabr.), d, antenne; b, Black-rat Bhister-bectle (Lytta murina Lee.), e, antenne.
Fig. 41. Margined Blister-beetle (Lytta marginata Fabr.). [From I'ractieal Entomologixt.)
Fig. 4. Three-lined Potato-beetle (Lema trilineatu, Oliv.) ; a, larva; b, tip of its body; c, pupa; d, eggs. [From I'ractical Entomologist.]
Fig. 43. Three-lined l'otato-bectle (Lema trilineata, Oliv.). [From Practical Entomologist.]
Fig. 44. Striped Cncumber-heetle (Diabrotica vittata, Fabr.). [From Practical Eutomologist.]
Fig. 45. Cueumber Flea-heetle (Haltica cucumeris Harr.). [From Practical Entomologist.]
Fig. 46. Colorado Potato-beetle (Doryphora 10-lineata, Say); a, eggs; b, larva, in different stages ; c, pupa; d, imago or beetle $; e$, wing-cover, emarged ; f, leg. cularged.

Fic. 47. Bogns Colorado Potato-beetle (Doryphora juncta, Germar); a, eqge; b, larra ; c, beetle ; d, wing-cover, enlarged ; c, leg, eularged.
Fig. 42. Colorato Potato-heetle Parasite (Lydella doryphore Riley).
Fig. 49. Spotted Ladybird (Hippodamia macnlata, De(icer). [Fron I'ractical Entomologist.]
'Fig. 50. Ninc-spotted Lalyhirl (Coccinella 9-notata Herbst). [From I'ractical Entomologist.]
Fig. 51. Thirteen-spotted Larlybird (Hippodamia 13-panctata, Liun.).
Fig. 52. Convergent Ladybird (Hippodamia convergens Guer.)
Fif. 53. Ladybird larva. [After Westwond.]
Fig. 54. Spined Soldier-bug (Arma spinosa Dallas); a, beak enlarged; b, bug; c, enlarged beak of an allied plant-feeder (Enschistus punctipes, Say).
Fig. 55. Common Squash-bng (Coreus tristis. DeGeer); b, enlarged beak.
Fig. 56. Bordered Soldier-bug (Stiretrus fimbriatus, Say).
Fig. 57. Many-banded Robber (Harpactor cinctus, Fabr.) ; b, enlarged heak.
Fig. 58. Rapacious Soldier-hng (Redurius raptatorius Say).
Fig. 59. Virginian Tiger-beetle (Tetracha virginica Hope).
Fig. 60. Fiery Ground-beetle (Culosoma calidum, Fabr.).
Fig. 61. Elougatc Ground-beetle (Pasimachus clongatus Lee.).
Fif. 62. Murky Gromul-beetle (Harpalus caliginosus Say).
Fifs, 63. Pineers for erushing Potato-beetles.
Fic. 64. Apple-root Plant-louse (Eriosoma pyri, Fitch); a, affeeted root : b, larva; c. winged lonse ; d, leg : e, proboseis; f, antenna of winged louse: g, antenna of larva (all greatly eularged).
Fig. 65. Vagabond Plant-louse (Pcmphigns ragabnndus, Walslı).
Fig. 66. Root-lonse Syrphus-fly (Pipiza radicum Riley); a, larva; b, puparinm from which the fly lias emerged ; c, fly.
Fig. 67. Gigantic (irape-root Borer (Prionus laticollis, Drury).
Fig. 68. Gigantic Grape-root Borer (Prionus laticollis, Drury); head and thoracic joints.
Fig. 69. Cylindrical Orthosoma (Orthosoma cylindricum, Fabr.).
Fig. 70. Grape Curculio (Coliodes inequalis, Say); a, infested grape; b, larra.
Fig. 71. Grape Curculio (Coliodes incqualis, Say). [After Walsh.]
Fig. 72. Grape Curenlio (Coliodes incequalis, Say) ; front leg. [After Walsh.]
Fig. 73. Grape-seed Maggot (Isosoma ritis Saunders).
Fig. 74. Grapc-cane Gall-curcnlio (Baridius Sesostris Lec.).
Fig. 75. Grape-vine Fidia (Fidia viticida Walsh). [From Practical Entomologist.]
Fig. 76. Grape Fruit-worm (Penthina vitivorana Pack. = Lolexia botrana Schitf.) ; a, pmpa; b, eоcoon.
Fig. 7\%. Snowy Tree-cricket (Ecanthus mireus Harr.), з. [Erom Practical Entomologist.]
Fig. 78. Snowy Tree-cricket (CEcanthusnivens Harr.), ㅇ. [F rom Practical Eutomologist.]
Fig. 79. Gooseberry Fruit-worm (Pempelia grossularice Pack.) ; ", coenon; b, moth. [After Packard.]
Fig. 80. Strawbeny Leaf-roller (Anchylopera fragario Walsh \& Riley; a, larva; b, anterior part enlarged; d, anal segment ; c, moth.
Fig. 81. White-marked Tussock Moth (Orypia leucostigma, Sm. \& Ahb.) ; ", q on eocoon; b, larva; c, female pupa; d, male pupa.
Fi (.) White-marked Tussock Moth (Crgyia lencostign a, Sm, \& Ah?.) ; female eaterpillar.
Fig. 83. White-marked Tussock Moth (Orgyia leucostigma, Sm. \& Ahb.), male.
Fig. s4. Bag-worm (Thyridopteryx cphcmereformis Haw.) ; a, larva; b, male ehrssalis; c, female moth ; d, male motlı ; e, female chresalis in bag, sectional view ; f, caterpillar and bag; g, very young caterpillars in their bags.
Fig. 85. Walnut Tortrix (Tortrix Rileyant Grote): a, Jarra ; b, side siew of one segment.

Fig. 86. Seed-corn Maggot (Anhtomyiu zow Riley); a, enlarged; b, puparium.
Fig. A\%. Seed-corn Maggot (Anthomyia zew Riley) ; kernels of corn containing the magrgot.
Fif. 8s. Whhite Grub or May-beetle (Lachnosterma quercina, Knoch); 1, pupa; 2, the grul) ; 3, 4, the beetle.
Fig. 89. Wrhite Grub attacked loy fungus.
Fig. 90. Ameriean Meromyza (Meromyza americama Fitch); a, infested stalk; b, maggot; c, pupa.
Fig. 91. Sheep Head Maggot (Estrus ovis Linn.) ; 1 and 2, the Gad-fly; 3, the puparium; 4, larva, dorsal view; 5, larva, ventral view; 6, younger larva; a, head; b, corncous appendages at anns ; c, spiraeles.
Fig. 92. Bee-moth (Galleria cereamu Fabr.) ; a, larva; b, cocoon; c, pupa; d, e, moth.
Fig. 93. Nehraska Bee-killer (Trupanea apirora Fitch = Promachus Fitchii O. S.).
Fig. 94 . Camel-cricket (Muntis carolinu, Linn.) ; a, female; b, male.
Fig. 95. Camel-cricket (Mantis carolina, Limı.), egg-masses.
Fıg. 93. Solidago Gall of (relechia gallesolidaginis Rilcy; a, section of gall; b, whole gall ; c, orifice through whieh the moth escapes; d, excrement of the larva; e, larva.
Fig. 97. Emytoma Bolteri Riles; antenne of of and \circ.
Fig. 9:. Thistle Plume-moth (Pterophorns carduiductylus Riley =Pt. cardui Zellemend), anterior and posterior juints of the larva.

REPORTII.

Fis. 1. Chinch-bug (Micropus lencopterus, Say).
Fig. 2. Chineh-bug (Micropus lencopterus, Siy), short-winged form.
Fig. 3. Spotted Ladybird (Hippodamia muculata, DeGeer). [From Iractical Eutomologist.]
Fig. 4. Trim Ladjbirl (Coccinella mundu Sas).
Fig. 5. Lacewing (Chrysopa sp.). [After Westwood.]
Fig. 6. Insidious Flower-bug (Anthocoris insidiosus, Say).
Fig. 7. Spined Soldier-bug (Arma spinosa Dallas).
Fig. 8. Ash-gray Leaf-bing (Piesma cinerea, Say).
Fig. 9. Flea-like Negro-bug (Corimelena pulicaria, Germar).
Fıg. 10. Bordered Soldier-big (Stiretrus fimbriatus, Say).
Fig. 11. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.).
FiG. 12. Cotton-worm (Anomis xylina, Say) ; a, egre ; b, worm, one-third grown ; d, top view; c, side view of full-grown worm ; e, coeoon; f, chrysalis. [Adapted from Glover.]
Fig. 12. Cotton-worm Moth (Anomis xylina, Say) ; a, with wings expanded; b, wings closed.
Fig. 14. Army-worm (Lencania mipuncta Haw.).
Flg. 15. Army-worm (Leucania unipucta Haw.), chrysalis.
Fig. 16. Army-worm Moth (Leucania unipuncta Haw.).
Fig. 17. Red-tailed Tachina-tly (Exorista leucanice Kirk.).
Fig. 18. Yellow-tailed Taehina-fly (Ecorista flavicauda Riley).
Fıg. 19. Glassy Mesochorus (Mesochorus vitreus Walsh). [After Walsh.]
Fig. 20. Pezomachus mimimus Walsh. [After Walsh.]
Fig. 21. Pezomachus minimus Walsh; bunch of cocoons. [After Walsh.]
Fig. 22. Chulcis albifrons Walsh. [After Walsh.]
Fig. 23. Microgaster militaris Walsh. [After Walsh.]
Fig. 24. Glyple viriduscons Walsh. [After Walsh.]
Fig. 25. Ophion purgatus Say.
Fig. 20. Clubbed Tortoise-beetle (Deloyala clavata, Oliv.).
Fig. 27. Two-striped Sireet-potato Bectle (Cassida bivitlata Say); 2, larva; 3, pupa; 4, beetle.

Fig. 2. Chelymopha cribraria, Fabr. ; pupa (entared). 「Aftor Packard.]
Fig. 23. Chelymorpha cribraria, Fabr. (enlarged). [After Packard.]
Fig. 30. Plysonota quinquepunctuta Wialsh \& Riley; a, larva; b, beetle.
Fig. 31. Golden Tortoise-heetle (Cassida aurichalcea, Fabr.), "gg.
Fig. 3?. Two-striped Sweet-potato Beetle (C'assida bivittuta Say), larvie.
Fig. 33. Gohlen Tortoise-bectle (Cassida aurichalcea, l’abr.), larva; a, hatural sizc; b, enlarged and with the dung taken from the fork.
Fig. 34. Golden Tortoise-beetle (Cassida aurichalcea, krabr.) ; a, prpa; b, beetle.
Fig. 35. Mottled Tortoise-bectle (Cassidu gutata, Oliv.) ; a, larva; b, pupa.
Fig. 36. Mottlerl Tortoise-bcetle (Cassida guttata, Oliv.).
Fıg. 37. Black-legred Tortoise-beetle (Cassida nigripss Oliv.); n, larva; b, larva eleaned and cnlarged; c, prpa (enlarged).
Fig. 33. Blaek-legred Tortoisc-beetle (C'assida nigripes Oliv.).
Fig. 39. Striperl Cneumber-beetle (Diabrotica vittutu, Fabr.). [Erom I'ractical Entom mologist.]
Fig. 40. Strìped Cucnmber-bectle (Diubrotica vittata, labr.), larva; a, dorsal view; b, side view.
Fig. 41. Stripel Cnenmber-boetlc (Dianotici viltata, Fabr.) pupa; 1, ventral ; 2, dorsal view.
Fif. 42. Twelve-spotted Diabrotica (Diubrotica 12-punctata, Oliv.). [From Practical Entomologist.]
FıG: 43. Pickle-worm (Ihacellura nitidulis Cram.) ; a, natnral size; b, head and first joints, eularged ; c, side view of a joint, enlarged; d, cervical shichd, enlarged; e, side of first joint, enlarged; $f, 2 l$ joint from above, enlarged; g, anal joint, enlarged ; h, cocoon ; i, motl, male.
Fig. 44. Hog-caterpillar of the Vine (Chorocampu mampinatrix, Sm. \& Ablo.).
Fig. 45. Hog-catcrpillar of the Vine (Cherocampu pampinatrix, Sm. \& Abb.), chrysalis.
Fig. 4f. Hog-caterpillar of the Vine (Chrerocampa pampinatrix, Sm. \& Abb.), moth.
Fig. 47. Mierogaster eocoons or Hog-caterpillar of the Vine (Cher. pumpinatrix, Sm. \& Abb.) [After Harris.]
Fig. 43. Mierogaster $=$ Apanteles. [After Marris.]
Fig. 49. Achemon Sphinx (I'hilampelus achemon, Drury), caterpillar.
Fig. 50. Achemon Sphinx (Philampelus uchemon, Drury), elxysalis.
Fiti. 51. Achemon Sphinx (Philampelns achemon, Drury), moth.
Figr. 52. Satellite Sphinx (Philampelus satellitia, Linn.) ; a, full-grown larva; b, its position at rest; c, young larva.
Fig. 53. Satellite Sphinx (Philampelus satellitia, Lins.), moth.
Fig. 54. Abbot Sphinx (Thyreus Abbotii Swainson) ; larva and moth.
Fig. 55. Eight-spotted Forrester (Alypia octomaculata, Fabr.) ; a, caterpiliar ; b, side view of one joint ; c, moth.
Fig. 56. Beantiful Wood-nymph (Eudryas grata, Fabr.).
Fig. 57. ? Pearl Wood-nymph (Eurtyas unio, Hiib.) ; a, larva; b, side view of one scgment enlarged; c, hump ou 11th joint, eularged. (See 3d Rep., Fig. 25.)
Fig. 52. American Procris (Procris americana Boisd.) ; a, larva; b, chrysalis; c, cocoon ; d, e, moth.
Fig. 59. American Procris (Irocris americana Boisd.), larre.
Fig. 60. Gigantic Grape-root Borer (I'vionus laticollis, Drury).
Fıg. 61. Broad-necked Prionus (Priomus luticollis, Drury), female.
Fig. 62. Gigantic Grape-root Borer (Prionus laticollis, Drury), pupa.
Fig. 63. Tile-horned I'rionus (Prionus imbricornis, Linu.), malc.
Fig. 64. Grape-seed Maggot (Isosoma vitis Saunders).
Fig. 65. Joint-тогm Fly (Isosoma hordei, ILarr.) ; a, female; b, male; c, $;$ q antenna; d, o antenna; e, f abdomen ; f, oे abdomen.

Fig. 66. Canker-worm; a, eggs of Fall Canker-worm (Anisopteryx pometaria Harr.) ; b, five eggs of same, enlarged ; c, larva of Spring Canker-worm (Paleacrita vernata, Peck), d, cocoon, e, crysalis, f, male moth, g, female moth-all probably of ternata. (Sce 6th Rcpt., p. 29). [u, b, c, d, e, after Harris; f, y, after Packard.]
Fig. 67. Spring Canker-worm (Paleaerita rernata, Peck), head enlarged.
Fig. 67. Mite (Nothrms ovicorms Pack.), eularged. [After Packard.]
Fig. 69. Rummaging Ground-beetle (Calosoma scrutator, Fabr.).
Fig. 70. Fiery Gronnd-bectle (Calosoma calitum, Fabr.).
Fig. 71. Fraternal Potter-wasp (Eumenes fraterme Say); b, clay nest; c, same put open.
Fic. 72. Southern Cabbage-butterfy (Pierisprotodice Boist.) ; a, eaterpillar; b, chrysalis.
Fig. 73. Southern Cabbage-butterfly (Pieris protodice Boisl.), female.
Fig. 74. Southeru Cabbage-buttertly (Pieris protodice Boisd.), male.
Fig. 75. Potherb Butterfly (Pieris oleracea Boisd.). [After Harris.]
Fig. 76. Potherb Buttertly (Pieris olevacea Boisd.), chrysalis. [After Harris.]
Fig. 77. Imported Cabbage-buttertly (Pieris rape Sehrank.) ; a, larva; b, chrysalis. [After Curtis.]
Fig. 78. Imported Cabbage-butterfly (Pieris rapce Sclurank.), female:
Fig. 79. Inported Cabbage-butterfly (Pieris rapo Schrank.), male.
Fig. 80. Butterfly Net: 5, sorket; 6, ring.
Fig. 81. Cabbage Plusia (Plusia brassice Riley) ; a, catcrpillar; b, chrysalis in cocoon; c, moth, male.
Fig. 82. Zcbra-caterpillar (Mamestra picta Harr.) ; a, caterpillar; b, moth.
Fig. 83. Tarnished Plant-lug (Capsus oblineatus Say).
Fig. 84. Philenor Swallow-tail (Papilio philenor Drury), caterpillar.
Fig. Philenor Swallow-tail (Papilio philenor Drury); a, chrysalis, back view; b, lateral outline.
Fig. 86. Plilenor Swallow-tail (Papilio philenor Drury).
Fig. 87. Cottonwood Dagger (Acromycte populi Riley); caterpillar.
Fig. 88. Cottonwood Dagger (Acromycta populi Riley).
Fig. 89. Missouri Bee-killer (Asins missouriensis Riley).
Fig. 90. Wing of Promachus (a), Asilus (b), Erax (c).
Fig. 91. Silky Asilus (Axilus sericons Say). [After Harris.]
Fig. 92. Erax bastardi Macq., larva.
Fig. 93. Erax bastardi Macr. ; a, fly ; b, pupa.
Fig. 94. Goat-wced Buttertly (I'aphia glyoerium Doubl.) ; a, caterpillar; b, chrysalis.
Fig. 95. Goat-weed Buttertly (Paphiaglyecrium Doubl.), male.
Fig. 96. Goat-wced Butterlly (Paphia glycerium 1)oubl.), female.
Fig. 97. Black Breeze-fly (Tabamus atratus Fabr.); a, larva; b, pupa shell; c, fly.
Fig. 98. False-indigo Gall-moth (IFalshia amorphclla Clem.); u, moth; b, caterpillar; e, gall; d, section of gall, showing larva in burrow.
Fig. 99. Misnamed Gall-moth (Euryptychia saligncena Clem.); a, moth; b, gall with protruding pupa-shell.

REPORTIII.

Fig. 1. Plum Cureulio (Conotrachclus nenuphar, Herbst); a, larva; b, pupa; c, curculio, enlarged; d, panctured plum wi the curenlio resting on it, uatural size.
Fig. 2. The Hull Curculio-catcher.
Fig. 3. The Hull Curculio-catcher; viewed from beneath; a, slide for closing central hole, $d ; b b$, handles; $c c$, wheels ; e, f, position of bag.
Fig. 4. The Ifull Curculio-catcher ; viewed from above.
Fig. 5. Strips of sheeting for closing up the tree-way in Hull's Curculio-catcher.
Fig. 6. The Hooten Curculio-catcher.

Fif. 7. Sigalphus Cureulio-parasite (Siyalphus curcnlionis Fitch); a, male; b, female; c, auteuna.
Fig. 8. Sigalphus Curenlio-parasite (Sig:lphus curculionis Fitch); a, larva; b, encoon; c, pupa.
Fig. 9. Porizon Cureulio-parasite (Parizon emotrashli Riley) ; a, q; b, $\begin{gathered}\text {; } c, ~ a n-~\end{gathered}$ tenna.
Frg. 10. Apple Curenlio (Authouomus qualrigibbus Say) ; a, natnral size; b, side view; c, baek view.
Fri. 11. Apple Cureulio (Authonomus quadrigibbus Say) ; a, pupa; b, larva.
Fir. 12. Quinee Cureulio (Conotrachelus crategi Walsh.) ; a, side; b, back.
Fig. 13. Plım Gouger (Anthonomus prunicida Walsh.).
Fig. 14. Strawbery Crown-borer (Analcis fragarie Riley); a, larva; b, side view of beetle; c, dorsal view.
Fig. 15. Pea-meevil (Bruchus pisi Limn.) ; a, beetle; b, injured pea.
Fif. 16. Pea-weevil (Bruchus pisi Linn.), egg enlarged.
Fıg. 17. Pea-meevil (Bruchus pisi Linu.) ; b, beetle, side view; c, larva; d, pupa, dorsal view ; g, pea, infested. [After Curtis.]
Fig. 18. Grain Bruchus (Bruchus granarius Linn.). [After Curtis.]
Fig. 19. Ameriean Bean-weevil (Bruchus fubre Riley); a, beetle; b, bean, infestad.
Fig. 20. New York Weevil (Ithycerus nocebboracensis, Forster) ; a, exeavation made by female to deposit eggs ; b, larva; c, beetle.
Fig. 21. Imbrieated Snout-beetle (Epicarıs imbricatus. Say).
Fig. 2.2. Corn Sphenophorus (Sphenophorus aon Walsh); a, back view: b, ontline side view ; s, enlarged punetures of elytra.
Fig. 23. Coeklebur Sphenophorus (Sphenophorus pulchellus Schoen.) ; a, baek view ; b, - ontline side view.

Fig. 24. Grape Leaf-folder (Desmiu macululis Westw.) ; 1, eaterpillar in folded leaf; 2, enlarged view of head and anterior joints ; 3, ehrysalis ; 4, male moth ; 5 , femalo moth.
Fif. 25. Grape-vine Epimenis (Psychomorpha epimenis, Drıry) ; a, larva; b, side vietr of one segment, enlarged; c, hump on 11th joint, enlarged.
Fig. 26. Grape-vine Epimenis (Psychomorpha epimenis, Drury), moth, male.
Fig. 27. Grapo-vine Plume (Pterophorus periscelidactylus Fiteh); a, eaterpillars in their retreat ; b, ehrysalis; c, one of the dorsal proeesses of ehrysalis; d, moth; one joint of larva enlarged, side view.
Fig. 29. Yellow-bear Caterpillar (spilosoma virginica, Fabr.) ; a, eaterpillar; b, chysalis; c, moth.
Fig. 29. Smeared Dagger (.Acronycta obliuita, Sm. \& Ablo.); a, eaterpillar; b, eoeoon; c, moth.
Fır. 30. Alciodes Rileyi Cress. ; hardened skin of caterpillar of the Smeared Dagger (Acronycta oblinitu, Sm. de Abb.) from which the Aleiodes has emerged.
Fig. 31. Pyramidal Grape-vine Worm (Amphipyra pyramidoides Gnen.), moth.
Fig. 32. Pyramidal Grape-vine Worm (Amphipyra pyramidoides Guen.).
Fig. 33. Grape-root Borer (Egeria polistijormis Harr.) ; a, male; b, female.
Fitr. 34. Spotted Pelidnota (Peliduota punctata, Linn.) ; a, larva; b, pupa; c, beetle ; d, anal joint of larva; e, anteuna of larva ; f, leg of larva.
Fig. 35. Grape-vine Flea-beetle (Haltica chalybea Illiger); a, larvie on leaf; b, larva, enlarged; c, earthen eell eontaining pupa; d, beetle. [d after Harris.]
Fig. 36. Grape-vine Flea-beetle (Haltica chalybea Illiger). [From Practical Entomotogist.]
Fıg. 37. Grape-vine Colaspis (Colaspis Alarida Say); 1, enlarged ; 2, natural size.
FıG. 33. Grape-vine Colaspis (Colaspis flavida Say) ; a, enlarged side view of larva; b, terminal joints seen from beweath.
Fig. 39. Galls of the Grape Phylloxera (Phylloxera vitifolier, Fiteh= rastatrix Pl.).

Fici. 40. Grape Phylloxera (Phyllocero ritifolis, Fitch = Ph. rastatrix Pl.) : a, the winged female; b, her font or tarsus-after signoret ; $c, \operatorname{egg} ; d$, newly-hatched gallinhabiting type ; e, same, dorsal riew; f, section of gall ; g, tubercled rootinhabiting form; h, mother gall-louse at height of her fertility: i, same, dorsal view ; j, k, differently veined wings of the Oak Pliglloxera of Europe.
Fif. 41. Great Lehia (Lebia grandis Hentz.).
Fit. 42. Boll-worm (Heliothis armigera Hiibn.) on tomato.
Fig. 43. Boll-worm (Ifcliothis armigera Hiibn.) ; a.egg, sile view; b, egg, top view; c, caterpillar; d, chrysalis in carthen cocoon ; e, moth, wings expander; f, moth, wings closed. [a,b,e, d after Glover.]
Fig. 44. Army-worm (Leисаиіа unipuncta Haw.).
Fig. 45. Fall Army-worm (Prodenia autumatis Riley=Laphygma fragiperla, Sm. \& Abl.) ; a, natural size: b, head magnified; c, one segment enlarged, from above; l, same, from side.
Fig. 46. Fall Army-worm (Prodenia autumatis Riley=Laphyma frugiperda, Sm. \& Abb.) ; a,b, c, three varieties.
Fig. 47. Army-worm Moth (Leucania unipuncto Harr.).
Fis. 48. Spiderwort Owlet-moth (Prodenia commelince, Abh.) ; a, caterpillar; b, c, dark and light varieties of the moth. [See Notes, ete., p. 56.]
Fig. 49. Unarmed Rustie (Agrolis inermis flarr.=d. sancia Hiibn.) ; a, egrg, enlarged; b. batch of cggs, hataral size.
Fig. 50. Apple-tree Tent-caterpillar (Clisiocampa americana Harr.) ; a, b, eaterpillars; c, eggs; d, cocoon.
Fig. 51. Apple-tree Tent-caterpillar (Clisiocampa americana Harr.) moth.
Fig. 52. Tent-eaterpillar of the Forest (Clisiocampa syluatica Harr.) ; a, eggs; b, female moth ; c, egg enlarged, top vicw ; l, cnlarged eggs, side view.
Fig. 53. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.).
Fig. 54. Rummaging Ground-beetle (Calosoma scrututor, Fabr.).
Fig. 55. Fall Web-worm (IIyphantria textor Harr.) ; a, eatcrpillar ; b, elhrysalis; c, moth.
Fig. 56. Blue-spanglad Peach-worm (Callimorpha fulticosta Clem.) ; a, caterpillar; b, moth ; c, one segment enlarged, side view ; d, same, top view.
Fig. 57. Ash-gray Pinion (Iylina cincrea Riley) ; a, worm in fruit; b, moth.
Fig. 58. Glassy-winged Soldier-bug (Campylonewra citripennis, Say).
Fig. 59. Glassy-winged Soldier-bug (Camplonema ritripennis, Say), pupa.
Fig. 60. White-lined Morning Sphinx (Deilephila lineata, Fabr.), moth.
Fig. 61. White-lined Morniug Sphinx (Deilcphila lineata, Fabr.), eaterpillar, light form.
Fig. 62. White-lined Morning Sphinx (Deilephila lineata, Fabr.) ; caterpillar, dark form. Fif. 63. Archippus Butterfly (Danais archippus, Fabr.).
Fig. 64. Archippus Buttertly (Danais archippus, Fabr.) ; a, egg, greatly enlarged; c, natural size ; c, f, lateral and dorsal views of a semment of the larva in its first stage, enlarged; b, larva in act of casting its skin, to show how the flexible horns are folded (d).
Fig. 65. Archippus lintterlly (Danais archippus, Fabr.), eaterpillar.
Fig. 66. Archippus Buttertly (Danais archippus, Fabr.); a, b, c, suceessive stages in changing from caterpillar to chrysalis.
Fig. 67. Archippus Butterfly (Danais archippus, Fabr.), chrysalis.
Fiti. 68. Disippus Butterfly (Limenitis disippus, Godt.), showing upper surface of left wing, and under surface on the right. [After Harris.]
Fig. 69. Disippns Butterfly (Limenitis disippus, Fabr.) ; a, egr greatly cnlarged; c, natural size ; d, one cell of the egg-sliell, greatly magnified; b, one segment of the larva, in its first stage.
Fıg. 70. Disippus Buttertly (Limenilis disippus, Fabr.) ; a, eaterpillar; b, chrysalis ; c, hibernaculum ; l, leaf cut for libernaculum.

Fig. i1. Disipurns Butterily (Limenitis disippus, labr.) : a leaf eaten by the caterpillar.
Fig. ie. Disippus Egs-parasite (Tichogramma! minuta Riley); a, fly with wings folded; l, front wing ; c, hind wing; d. leg; e, antemat - all chlargad.
Fig. 73. Microyaster militaris Walsh. [After Walsh.]

REPORTIV.

Fig. 1. Perforated tin box for sifting paris green.
Fig. 2. Creighton's "Improved Patent Insect Destroyer."
Fig. 3. Grand-Daddy-Long-Legs (Phalangium dorsatum Say).
Fig. 4. Fiftecn-spotted Lad弓̈bird (Mysiu 15-puncłuta, Oliv.); a, larva; b, pmpa; c, first joint of larva, enlarged ; d, e, f, g, different varieties of the beetle.
Fig. 5. Icy Ladyhird (Hippodamia glacialis Fabr.).
Fig. 6. Ring-banded Soldier-bng (Perillus circumcinctus Stal); b, antenna; c, heak (enlarged).
Fig. 7. Dotted-legged Plant-hug (Enschistus menctipes, Say) ; c, beak (ealargel).
Fig. 8. Spined Soldier bug (Arma spinoza Dallas); a, beak (enlarged).
Fig. 9. Spined Soldier-bug (irma spinosa Dallas); a, pupa; b, larva; c, egg (all enlarged).
Fig. 10. Rove-hectle (Philouthus apicalis, Say).
Fig. 11. Rove-bectle larva (Goërius olens). [After Westwood.]
Fig. 12. Rove-bentle (9 ucdius molochinus, Grav.), pupa.
Fig. 13. Wier's Apple-worm Trap.
Fig. 14. Pennsylvania Soidier-beetle (Cheuliognathus pensylranicus DeG.); a, larva; b, heal and prothorax, enlarged ; e, labium; d, labrnm; e, leg; f, maxilla; g, antenna; h, mandible.
Fig. 15. Two-lincd Soldier-beetle (Telephorus bilineatus, Say); a, larva; b, anterior joints cularged ; c, beetle.
Fig. 16. Grape-vine Colaspis (Colaspis fiaride Say); one joint of larva, viewed from beneath and enlarged; b, lead of larsa, from beneath; c, sanc, from above, enlarged.
Fig. 17. Harlequin Cabbage-bug (Strachia histrionica Hahn); a, larva; b, pupa; c, eggs: fl, eggs enlarged, site view; e, same, top view; y, bug; h, same, with wings expanded.
Fig. 18. Raseal Leaf-crumpler (Ihycita mbulo Walsh); a, case, containing caterpillar ; b, cases in winter ; c, head and thoracie joints of larva, enlarged; d, moth.
Fig. 19. Larval cases of the Rascal Leaf-erumpler (Phycita ncbulo Walsh) in winter.
Fig. 20. Walnut Case-hearer (Acrobasis juglundis LeBaron); a, ease between two leatlets; b, case; c, wings of nebulo for comparison ; d, wiugs of moth; c, wings of a variety of same from the crab-apple.
Fig. 21. Apple-leaf Skeletonizer ('empelia Hummondi Riley); a, larva; b, middle joint, enlarged; c, anterior joints, enlarged; d, moth.
Fig. 22. Green Apple-leaf-iyer (Tortrix cinderella Riley); a, caterpillar; b, chrssalis; c, moth ; d, pupal case.
Fig. 23. Apple-leaf Bucculatrix (Bucculatrix pomifoliella Clem.) ; a, cocoons on twig : b, cocoon, eularged; c, moth.
Fig. 24. Apple-twig Borer (Dostrichus bicaudatus, Say). [After Walsh.]
Fig. 25. Apple-twig Borer (Bostrichus bicaudutus, Siy) ; twigs bored liy this insect.
Fig. 26. Red-shouldered Sinoxylon (Sinoxylon basilare, Say): a, larva; b, pupa; c, beetle.
Fig. 27. Red-shoulderen Sinoxylon (Sinoxylon basitare, Say); a, hearl and thoracic joints of larva greatly enlarged; b, labrum and mamlibles; c, anterior leg; d, intermediate leg ; e, posterior leg.

Fıg. ©3. Grape Phylloxera (Phylloxcra vilifolic, Fiteh = Ph. rastatrix Pl.) ; a, shows a healthy root; b, one on which the lice are working, representing the knots and swellings eaused by their punctures; c, a root that has been deserted by then, and where the rootlets have commeneed to deeay ; d, d, d, shows how the lice are found on the larger roots; e, female pupa, dorsal view; f, same, ventral view ; g, winged female, dorsal view ; h, same, ventral view; i, magnified antenna of winged insect ; j, side view of the wingless female, laying egigs on roots; k, shows how the punctures of the lice canse the larger roots to rot.
Fig. 29. Mulberry Silkworm (Bombyx mori Linn.), larva.
Fig. 30. Mulberry Silkworm (Bombyx mori Linn.), cocoon.
Fıg. 31. Mulberry silkworn (Bombyx mori Linn.), moth.
Fıg. 32. Mulberry Silkworm (Bombyx mori Linn.), coeoons; u, White French Annual ; b, Yellow French Annnal ; c, Green Japanese Anuual ; d, White Japanese Anmual : e, White Chinese Anmual.
Ftg. 33. Ceeropia Silkworm Moth (Attacus Cecropia Limn.).
Fig. :34. Cecropia Silkworm (Attacus Cecropia Linn.) cocoon.
Fig. 35. Cecropia Silkworm (Attacus Cecropia Linn.), clıysilis.
Fig. 36. Ceeropia Silkworm (Attecus Cecropia Linn.).
Fig. 37. Ophion macrorum, Linn. [After Packarl.]
Fig. 38. Ophion macrurum, Linn., larva.
Fig. 39. Mary Chaleis-fly (Chalcis mario Riley).
Fig. 40. Ceeropia Cryptns (Cryptus samio Pack.), cocoons within tho larger Ceeropia cocoon.
Fig. 41. Ceeropia Cryptus (Cryptus samix Paek.) ; a, female; b, female abdomen of C. mumcius; c, male abromen ; d, highly magnified piece of wing.

Fıf. 42. Ailanthus Silkworm (Attacus cynthia, Hibhı.) ; 1, caterpillar; 2, moth; 3, cocoon ; 4, chrysalis; 5, eggs.
Fifr. 43. Promethia Silkworm (Attacus promethea Drury) ; a, third stage; b, head in fonrth stage, enlarged ; c, lateral view of a joint in font stage, enlarged; d, full-grown caterpillar.
Fig. 44. Promethia Silkworm (Attacus prometheu Drury), cocoon.
Fig. 45. Promethia Motlı (Attacus promethca Drury), male. [After Harris.]
Eig. 46. Promethia Motlı (Attacus promethea Drury), fematc. [After Harris.]
Fit. 47. Lina Moth (Attacus Lmua Linn.). [After Harris.]
Fig. 48. Lnna Silkworm (Atacus Lena Lime.).
Fig. 49. Linna Silkworm (Attacus Lama Linn.), cocoon. [After Fílris.]
Fıg. 50. Polyphemus Moț (Attacus Polyphemus Linu.), male.
Fig. 51. Polyphemus Moth (Attacus Potyphemus Linu.), female. [After Iarris.]
Fig. 52. Polyphemus Silkworm (Attacus Iolyphenus Linn.). [After Trouvelot.]
Fig. 53. Polyphemus Silkworm (Attacus Polyphemus Linn.), coeoon. [After Tronvelot.]
Fifi. 54. Polyplemus Silkworn (Attacus I'olyphemus Linn.), elnysalis. [After Trouvelot.]
Fig. 55. Yama-maï Moth (Attucus yama-maï, Gnér.-Mén.), male.
Fif. 56. Yima-maï Silkworm (Atacus yamu-mä̈, Gnér.-Mén.) ; egg, natnral size and enlarged ; yomng caterpillar on leaf; full grown caterpillar at rest on twig.
Fıi. 57. Yama-maï Silkworm (.1ttacus yoma-maï, Guér.-Mén.), at rest on leafy twig, at a. [After Adams.]

Fı́. 58. Yıma-maï Silkworm (Ittacus yama-mä̈, Gиér.-Mén.), cocoon.
Fig. 59. Cage for receiving the deposition of the eggs of Yama-maï Moth. [After Adams.]
Fig. 60. Pernyi Motlı (Ittacns Pernyi, Gnér.-Mén.).
Fig. 61. Pernyi Silkworm (Atlacus Pernyi, Guér-- Mén.) ; egg, natural size ant eularged eocooll.

Fig. 63. Horned Passalus (Passalas cormaths Fabor.) ; a, larva; b, phpa; c, beetle: d, nomer side of three thomacie joints of larva, shoswing legs; e, metathoracio: leg of larva.
Fig. 63. Grat Leoparl-moth (Ecpantheria scribonia, Stoll.), a, caterpillar; b, one hair, eularged.
Fig. 64. Great Leoparl-moth (Ecpuntheriu scribonia, Stoll.) ; a, fomale; b, male.
Fig. 65. Isabella Tiger-moth (Aretice isubella, Smith) ; a, eaterpillar; b, clirysalis; c, moth.
Fig. 66. Acorn-moth (Holeocera gloudulella Riley); ", eaterpillar in aeorn; b, perforaterl acorn; c, heal and thoracie joints of caterpillar, 'nlarged; d, e, lateral aud dorsal riews of one segment of larva ; f, moth ; g, base of antema of male.

REPORT V.

Fig. 1. Pyramid, showing the nature of the month, the relative rank of the Orter and the aftinitives of the Sub-omers of Insects.
Fig. 2. Bald-fires Hornet (iespa macnlatı Limn.). [Nfter Smborn.]
Fig. 3. Goldsmith-beetle (Colalpa Ianigera, Linn.).
Fig. 4. Dë̈орё̈ bella. Drurs.
Fag. 5. Dotted-legged Plant-lug (Euschistus punctipes, Sas).
Fig. 6. Buttalo Tree-hopper (Ceresa bubalus, riahr.) ; a, side view; b, view fromabove.
Fıg. 7. Missouri Bee-killer (Asilus missouriensis Riley).
Fig. 8. Differential Locust (Caloptemes differentialis Walk.).
Fig. 9. Dragon-fly (Libellula trimaculata, DeGeer.) [After Sanliorn.]
Fig. 10. Hull's Curculio-catches:
Fik. 11. Bnttertly net; b, hinge in the ring ; c, ring folded; d, nut sunk and soldered into brass tube at chat of handle; ϵ, screw ; f, tip of handle, showing attachment of the ring.
Fig. 12. Butterfly net; a, ring; b, socket; a, cork plug.
Fig. 1:3. Buttertly net, hear for attaching the ring to the rod.
Fig. 14. Poison-bottle for killing insects; a, wadling to keep the eyanide graius in place.
Fig. 15. Chloroform in stoppered bottle with brush.
Fitr. 16. Chloroform in bottle with tnbe passing through the cork.
Fig. 17, Method of piming insects; a, beetle; b, bug.
Fig. 18. Method of carding small insects.
Fig. 19. Method of "setting" Lepidoptera on a spreading board.
Fig. 20. Settingr-needle.
Fig. 21. Sectious of framework of glass-covered volume to display showy insects; a, ends; b, front; c, back.
Fig. 22. Foreeps for pinning insects.
Fig. 23. Forceps for pinning insects.
Fig. 24. Forceps for pinning inscets.
Fig. 25. Breeding-cage ; a, bottom hoard; b, four-sided frame, with glass sides and Joor, fitting over a zine pau (.ff) attached to the bottom board ; c, cover fitting to the frame and having a wire gauze top; d, zinc tube attached in centre of the pan, to contain a bottle for the reception of the food plant:

- e, sand in the pan; $g g$, eross pieces for supporting the cage and to prevent warping.
Fig. 26. Ring-legged Pimpla (Pimpla ammipes Br.), fenale ; to the right a figure of the ovipositor to show the two iuner rods; to the left the abdomen of the male.
Fig. 27. Delicate Longsting (Macrocentrus delicatus Cress.) ; to the right the abdomen of the male.
FıG. 2S. Rust-red Social Wasp (Polistes rubiginosus St. Farg.) ; b, nest, the natural position being with the mouths of the cells down.

Fıg. 29. Apple-tree Tent-caterpillar (Clisiocampa amoricana Harr.), egss.
Fig. 30. Grape Plyylloxera (Mhylloxara vastatix Plan.) ; a, b, peculiar pedunculated galls ; c, gall just forming ; d, same from beneath.
Fig. 31. Oyster-shell Bark-lonse (Mytilaspis pomicorticis Riley) : a, male lonse from beneath; b, same from above and with wings expanded; c, male scale; d, leg of male: e, portion of wing very hishly magnified; f, one joint of male anteune (all liighly magnified).
Fıg. 32. Oyster-shell Bark-lonse (Mytiluspis pomicorticis Riley); anal joint of louse, with a more highly magnified segment of edge at b, and of a single pore at c; d, female lonse ; c, a section of its proboscis more lighly magnified ; $g h f$, femate scale, h, first scale, g, second scale, f, third seale.
Fig. 33. Mite (Dermaleichus?).
Fic. 34. Aphelinus mytilaspidis LeBaron.
Fig. 35. Pine-leaf Scale-insect (Mytaspis pinifolie, Fitch..); a, scales on leaves of white pine; b, male scale; e, female scale from white pine; d, fenale scale from broader leaved pine (b, c and d, enlarged).
Fig. 36. Pine-leaf Scale-insact (Mytilaspis pinfolire, Fitcli) : male, lighly magniged.
Fig. 37. Painted Ladybiril (Coceinelle picte Kandall) ; a, lara; b, heetle; c, beetle, enlarged.
Fig. 32. Hitkory Bark-horer (Solytns caryw Riles); 1, view of its galleries on the inside of the hark, slowing the beetle in the central gallery and the larve at the ends of the side galleries; 2 , burrows made by larger larvie; 3 , beetle, magnified and natural size; 4, larva, magnified and natural size: 5, pupa, maguified; 6 , senlpture of elytra, magnified.
Fig. 39. Rose Chafer (Macrodactylus subspinosms, Fabr.), with the enlarged anterior tibia at the left.
Fig. 40. Chineh-hug (Micropus lencopterus, Say).
FıG. 41. False Chinch-hng (Nysius destractor Riley) ; a, potato leaf showiug some effects of its punctures; b, pupa; c, matnre bug.
Fig. 42. Grape-vine Apple-gall (Fitis-pomam Walsh \& Riley) ; a, exterior: b, section.
Fig. 43. Gall-gnat (Cecidomyia salicis-strobiloides Walsh), u, female: b, male antennie.
Fig. 44. Grape-vine Filbert-gall (Fitis-caryloides W. © R.) ; a, anterior joints of larva, showing breast-bone; b, cluster of galls ; c, section of single gall.
Fig. 45. Grape-vine Tomato-gall (I'itis-tomutos Riley =Letsioptera ritis O. S., gall): a, section of a single swelling.
Eıf. 45. Grape-vine Tımpet-gall (Vitis-viticola Riley = Cecidomyia viticola O. S.)
Fıf. 4\%. Jumping Tree-cricket (Orocharis saltator Uhler) eggs in grape twig; a, eggs; b, punetnres ; c, egg, enlarged.
Fw, 42. Jumping Tree-cricket (Orocharis salfator Uhler) ; a, female: b, male.
Fıf. 49. Snowy Tree-cricket ((Ecantlus niveus Harr.) eggs; a, punctures in twig; b, section of twig showing the eggs within; c, egg, enlarged; d, gramulations at romuded end of egg, more highly magnified.
Fis. 50. Buffalo Tree-hopper (Ceresa bubahus Fabr.) eggs in slits in the bark of a tree; a, one slit enlarged ; b, natural size.
Fir. 51. Buffalo Tree-hopper (Ccresa bubalus, Fabr.) ; a, side; b, dorsal riew.
Fig. 52. Buffalo Tree-hopper (Cercsa bubalus, Fabr.) ; a, larsa; b, pupa; o, ovipositor of the female, all enlarged.
Fig. 53. Eres-punctures of Tree-hopper (?) on apple twigs; a, natural size; b, enlarged.
Fig. 54. Frosted Lightning-lıpper (Pociloptera pruinosa, Sar) eggs; a, enlarged ; b, in position within twig, eularged; c, natural size.
Fig. 55. Frosted Lightning-hopper (Pociloptera pruinosa, Say).
Fig. 56. Egg-pnnctures of (?) Orekelimum glaberimum (Burur.).
Fıg. 57. Eggs of the Angnlar-winged Katydid (Microcentrus retinervis, Burm.) ; a, front; b, side view, just before hatehing.

Fig. 58. Exgs of the Angular-winged Katy.lid (Microceatrus relinercie, Bura.) ; ", front; b, side view, soon after laid.
Fig. 59. Eggs of the Broad-winged Katydid (Platyphyllum concurum Harr.) ; a, side ; b, front view, enlarged ; c, d, natural size.
Fig. 60. Buck Moth (Hemileuca maia, Drury).
Fig. 61. Buck Moth (Hemilencu maia, Drury) egers.
Fig. 62. Buck Moth (Hemileuca maia, Drury) ; a, full-grownlarva; b, pupa; c, ordinary form of spine of larva in the first stage ; d, brancled spine on thoracic joints of same: ℓ, form of spines in second stage of larva; f, g, spines of fuil-grown larsa.
Fig. 63. Io Moth (IIyperchiria Io, Fahr.), male.
Fig. 64. Io Moth (Ityperchirit Io, Fabrr.), female.
Fig. 65. Io Moth (Ifyperchiria Io, Fahr.), caterpillar.
Fig. 66. Io Mot h (Hyperchiria Io, Falir.), spines in 1st (r), 2 l (b), and 5th (a) stages of caterpiliar.
Fig. 67. Green- striped Maple-wom (Inyocamp a rubicunda, Fabr.) ; a, caterpillar; b, chrysalis; c, female moth.
Fig. 68. Belroisia bifasciata, Fabr.
Fig. 69. Hellgrammite Fly (Corydalus cornutus, Linn.) ; a, larva; b, pupa: r, male fly ; d, outline of head and prothorax of female.
Fig. 70. Hellgrammite Fly (Corydalus cornutus, Liun.); supposed eggs.
Fig. 71. Hellgrammite Fly (Corydalus cornutus, Linn.), pupa.
Fig. 72. Gnat-weed Butterfly (Paphia glyecrium Doubl.); a, leaf eaten by the larva (natural size) ; b, head of larva in the first stage $; c$, larva in third stage $; d$, head in second stage ; e, head in fourth stage - all enlarged.
Fig, 73. Painted-wing Digger-wasp (A mmophita pictipennis Walsh).
Fig. 74. Yucca-moth (Promba yuccasella Riley); a, head with pollen mass (1), (2) the maxillary tentacle, (3) the maxillae, (4) maxillary palpi, (5) antenna; b, maxillary palpi with tentacle $; c$, single spine from maxillary tentacle; d, maxillary palpus of male ; e, wing scale; f, anterior leg ; g, labial palpus; h. venation of anterior wing; i, veuation of posterior wing, male; j, last joint of the abdomen of the female with the ovipositor exserted - all ex. larged.
Fig. 75. Yucca-moth (Tromuba yuccasella Riley) ; a, larva; b, motliwith wings folded; c, female moth with wings expanded, (all natural size) ; d, side view of one joint of larva; ϵ, head of larva from below; f, same from above; g, leg of ${ }^{\prime}$ larva ; h, maxilla ; i, mandible ; j, labial palpi and spinneret ; k, antenna all cularged.

REPORTVI.

Fig. 1. Potato-beetle Catchcr. Made of five barrel hoops and four (B1B, EE) barrel staves, covered with cotton cloth.
Fig. 2. Grape Plyylloxera (Phylloxera vastatrix Planchon), galls on the leaf, seen from beneath.
Fif. 3. Grape Phylloxcra (Phylloxera vastatrix Plan.) ; a, b, petunculated galls; c, gall just forming ; d, same from beneath.
Fig. 4. Grape Plylloxera (Phylloxera vastatrix Plan.)-Type Gallicola; a, b, newlyhatched larva, ventral and dorsal view ; $c, \operatorname{egg} ; d$, section of gall ; θ, swelling of tendril ; f, g, h, mother gall-lousc-lateral, dorsal and ventral views; i, her antenna ; j, her two-jointed tarsus.
Fig. 5. Grape Phylloxera (Phylloxera rastatrix Plan.)-Type Radicicola; a, roots of Clinton vine, showing relation of swellings to leaf galls, and power of resisting decomposition ; b, larva as it appears when hibernating ; c, d, antenna and leg of same; e, f, g, forms of more mature lice ; h, granulations. of skin ; i, tubercle ; j, transverse folds at border of joints ; k, simple eyes.

Fig. 6. Grape Phylloxara (Phylloxera rastatrix Plan.)-Typo Radicionla; a, shows a liealthy root; b, one ou which the lice are working, representing the knots and pmetures cansed by their punetures; c, a root that lias been deserted loy them, and where the rootlets have commenced to decay; d, d, d, show low the lice are fonnd on the larger roots ; e, female pupa, dorsal view; h, same, ventral view; i, magnified antenua of winged insect ; j, side view of the wingless female, laying eggs on roots; k, shows how the punctures of the lice canse the larger roots to rot.
Fici. 7. Grape Phylloxera (Phylloxera vastatrix Plan.). Pterogostie characters; a, b. different venation of front wing; c, hind wing ; d, e, f, showing development of wings.
Fis. 8. Grape Plylloxera (Phylloxera vastatrix Plan.)-Type Radicicola; a, b, pupa and imago of a problematical individual or supposed male ; c, d, its antenna and $\operatorname{leg} ; e$, vesicles found in abdomen.
Fifi. 9. Thrips, enlarged, wings at right more highly enlarged.
Fig. 10. Lace-wing fly (Chrysopa sp.) ; a, eggs; b, larva; c, cocoon, the upper figure with the lid open after the ily has escaped; d, dly, the wings omitted on the left. [a, b, d, after Westwool.]
Fig. 11. Ladyhird (Hippolomia convergens Gué.); larva, pupa and beetle.
Fig. 12. Syrphins larvit; b, one joint enlarged.
Fig. 13. Syrphas-lly (Helophilus latifrons Loew).
Fici. 14. Insidious Flower-hug (Anthocoris insidiosus, Say).
Fıc. 15. Root-louse Syrphis-fly (Pipiza radicum W. \& R.) ; a, larva; b, pupa; c, fly.
Fig. 16. Phylloxera Mite (Tyroglyphus phyllorere Plancbon \& Riley) ; a, dorsal ; b, ventral view of female ; c, mouth parts ; d, f, g, h, forms of tarsal appendages ; c, ventral tubercles of male.
Fig. 17. Hoplophora arctatu Riley ; a, b, c, d, e, different attitudes assmmed by it; f, strongly magnified leg.
Fig. 18. Ameriean Oak Phylloxera (Phylloxeru Rileyi Lichtn.); a, pupa; b, winged females; c, antenua greatly enlarged; d, portion of infested leaf, mider side.
Fig. 19. American Oak Plyylloxera (Phylloxera Rileyi Lichtı.); a, b, dorsal and ventral views of larva as seen hibernating; c, d, highly maguificd leg and antenna of same.
Fig. 20. Grape-vine Epimenis (Psychomorpha epemenis, Driry); a, larra; b, one joint. enlarged, side view ; c, hump on joint 11.
Fig. 21. Grape-vine Epimenis (Psychomorpha cpimenis, Drnry), male moth.
Fig. 22. Beantiful Wood-nymph (Eudryas grata, Fabr.) : a, full grown larva; b, one joint, enlarged, side view ; c, cervieal shield from behind ; d, anal hump; from behind; e, f, top and side views of egg.
Fig. 23. Beantiful Wood-nymph (Eudryas grata, Fabr.), female moth.
Fig. 24. Pearl Wood-nymph (Eudryas unio, Hiibn.), male moth.
Fig. 25. Eight-spotted Forester (Alypia octomaculata, Fabr.) ; a, larra; b, one joint, enlarged, side view ; c, female moth.
Fig. 26. Red-legged Ham-heetle (Corynetes rufipes, l'abr.) ; a, larva: b, pupa; c, cocoon ; d, beetle, enlarged ; c, same, natural size; f, leg of larva; g, mandible, h, lahium, i, maxilla,, , antenna, of larra-all enlarged.
Fig. 27. Larder-beetle (Dermestes lardarius Limn.) ; a, larva; b, one of its barbed hairs: c, beetle.
Fig. 2*. Clover-hay Worm (.18opia costalis, Fabr.) ; 1, 2, larva; 3, cocoon ; 4, chrysalis; 5,6 , moth with wings expanded, and closed; 7, worn covered with silken wel.
Frt. 2J. Legred Maple Borar (Ejeria acorni, Clem.) ; a, a, larva, dorsal and lateral views; b, b, b, cocoons exposel by detachment of bark; c, moth ; d, chrysalis skin as it is often left remaining in the hole of exit.

Fig. 30. Raspberry-root Borer (Ejeria rubi Riley); a, male moth; b, female moth.
Fig. 31. Northern Brenthian (Eupsalis minuta, Drury) ; a, larva; b, pupa; c, female beetle ; d, head of male do. $; f$, leg of larva ; g, head of larva, from in front; h, labium ; i, labrnm; j, mandible; k, maxilla ; l, head from bencath, all of larva and enlarged ; m, end of body of pupa, dorsal view.
Fig. 32. Larva of Tencbrionid (?); b, front view of hcad ; c, mandible $; f$, antenna; g, maxilla ; h, labium ; l, e, concave cud of the body, full and side views.
Fig. 33. Sumach Flea-beetlc (Blepharida rhois, Forst.); a, egg; b, b, egg-masses, covered with exeremont ; c, c, c, c, larva; d, cocoon ; e, pupa; f, leetle ; g, antenna of larva; h, maxilla do. $; i$, mandible do. $; j$, labium do. ; k, labrum do.; l, leg do.
Fig. 34. Tiphic inornata Say ; a, perfect wasp ; b, head or larva, enlarged ; c, larva, ventral view ; d, cocoon cut open.
Report VI, p. 1:2. Jiggers (Leptus irvitans Riley, to the right; L. americanis Riley, to the left).
Fig. 35. White-grub Fungus (Torrnbia ratcnclii, Berk.).
Fig. 36. Dominican Case-bearer (Coscinoptera dominicana, Fabr.); a, larva cxtracted from case ; b, do. with case ; c, beetle, showing punctures; d, same, natural size; e, cgg, enlarged ; i, eggs, natural size; g, head of male beetle, enlarged; h, mandible of same, more enlarged $; j$, leg of larva, with the claw joint more enlarged ; f, under side of larva ; k, its mandible ; l, maxilla, all enlarged.
Fig. 37. Chlamys plicata, Oliv.; a, larva extracted from case, the figure at the right showing the larva in the case. [After Packard.]
Fig. 38. Yucca-moth (Promuba ynccasella Riles) ; m, female chrysalis; I, male chrysalis, the apical joints more highly enlarged and viewed from the side in lower figure.
Fig. 39. Eyed Emperor (Apatura lycaon, Fabr.) ; a, eggs; b, larva; c, d, chrysalis, dorsal and lateral views; e, imago, male, the dotted line showing form of female - all natural size.
Fig. 40. Eyed Emperor (Apatura lycton, Fabr.) ; f, egg, magnified; g, larva, lateral view; h, imago, under side-natural size; i, j, k, l, m, the tive differeut larval heads; n, o, dorsal and lateral views of one joint of larva - enlarged.
Fig. 41. Tawny Emperor (Apatura herse, Fabr.) ; a, eggs; b, larva; c, chrysalis; d, imago, male, the dotted line showing form of female - all natural size.
Fig. 42. Tawny Emperor (Apatwra herse, Fabr.) ; g, larva, half grown, dorsal view; h, imago, male, under side - uatural size ; i, j, k, l, m, the five different heads of larva; n, o, dorsal and lateral views of one joint of larva; p, egg-cularged ; g, larve as wheu hibernating - natural size.
Fig. 43. Eggs of the Angular-winged Katydid (Microcentrus retinervis, Burm.) ; a, front ; b, side view, just before hatching.
Fig. 44. Eggs of Augular-winged Katydid (Microceutrus retinerris, Burnn.); a, front; b, side view, soon after laid.
Fig. 45. Angular-winged Katydid (Microcentrus retinervis, Burm.) ; male wings closed.
Fig. 46. Angular-winged Katydid (Microceutrus retinervis, Burm.); a, ovipositor of female, nat. size ; b, tip of same, enlarged.
Fig. 47. Angular-winged Katydid (Microcentrus retinervis, Burm.) ; female ovipositing.
Fig. 48. Back-rolling Wonder (dutigaster mirabilis Walsh); a, female, wings expanded; b, same, side view, partly rolled up; c, same nearly rolled up; d, antenna of same.
Fig. 49. Back-rolling Wonder (Antigaster mirabilis Walsh); a, eggs of Microcentrus from which it has issued ; b, female pupa, ventral view; c, male tly; d, his antemna.
Fig. 50. Narrow-winged Katydid (Phaneroptera curricauda, DeGeer); female. [After Harris.]

Fig. 51. Narmow-winged Katydid (Phaneroptcra curricaula DeGeer) ; a, ovipositor of female. nat. size ; d, end of same, enlarged ; c, anal appendage of male, side viow; b, same, baek view.
Fig. 52. Broarl-winged Katydid (Platyphyllum concurum Harr.) ; male (after Harris). [Adapted from Harris.]
Fig. 53. Broad-winged Katydid(Platyphyllum concarum Harr.) ; a, ovipositor of femalc, nat. size; b, end of same, enlarged.
Fig. 54. Eggs of Broad-winged Katydid (Platyphyllum concavum Marr.) ; a, side; b, front view-enlarged ; c, d-natural size.
Fig. 55. Oblong-winged Katydid (Phylloptera oblongifolia, DeGeer), ontline of female [adapted from Harris] ; b, end of ovipositor, enlarged.

REPORT VII.

Fig. 1. Gray's Improsed Sprinkler, for the use of Paris Green water. [From inventor.]
Fig. 2. Chineh-hug (Micropus lencopterus, Say).
Fig. 3. Chinch-bug (Micropus leucopterus, Say) ; a, b, eggs; e, newly hatched larva; d, its tarsus; c, larra after first molt ; f, same after seeond molt ; g, pupa, the natural sizes indicated at sides; h, enlarged leg of perfeet bng; j, tarsus of same still more enlarged ; i, proboseis or beak, enlarged.
Fig. 4. Chinch-bug (Micropus leucopterus, Say), short-winged form.
Fig. 5. Spotted Ladybird (Hippodamia maculata, DeGeer). [From Practical Entomologist.]
Fig. 6. Trim Ladybird (Coccinclla munda Say).
Fig. 7. Insidious Flower-bug (Authocoris insidiosus, Say).
Fig. 8. Many-banded Robber (Harpactor cinctus, Fabr.); a, bug; b, its beak, enlarged.
Fig. 9. False Chinch-bug (Nysius destructor Riley); b, pupa; c, mature bug.
Fig. 10. Ash-gray Leaf-bug (Piesma cinerea Say).
Fig. 11. Flea-like Negro-bug (Corimelena pulicaria, Germar); natural size and enlarged.
Fig. 12. Flat-headed Apple-tree Borer (Chrysobothris femorata, Fabr.) ; a, larva, dorsal view; b, pupa; c, swollen thoraeie joints of larva from beneath; d, beetle.
Fig. 13. Cherished Bracon (Brason charus Riley).
Fig. 14. Spring Canker-worm (Anisopteryx vernata, Peck); a, full grown larva; b, egg, enlarged, the natural size shown in the small mass at the side; c, d, one joint enlarged, side and dorsal views.
Fig. 15. Spring Canker-worm (Auisopteryx vcrnata, Peck); a, male moth; b, female do. - uatural size ; c, joints of her antenne ; d, joint of her abdomen, showing spines; e, her ovipositor - enlarged.
Fig. 16. Spring Canker-worm (Anisopteryx vernata, Peek); front view of head.
Eig. 17. Fall Canker-worm (Anisopteryx pometaria Harr.) ; a, b, egg, side and top views; c, d, side and top views of one joint of larva,-cularged; e, batch of eggs; f, full grown larva; g, female ehrysalis-natural size; h, top view of anal tubercle of chrysalis.
Fig. 18. Fall Canker-worm (Anisopteryx pometaria Harr) ; a, male moth; b, female do.natural size ; c, joints of her antenne ; d, joint of her abdomen-enlarged.
ÁIG. 19. Phylloxera, Male (Phylloxera caryecaulis, Fitch?).
Fig. 20. Grafting ; a, b, incisions to receive the scion; d, scion ; c, string to seeure scion -to prevent phylloxera injury.
Fig. 21. Grafting-to prevent phylloxera injury.
Fig. 22. American Oak Phylloxera (Phylloxera rilcyi Licht.); u, male, ventral view; b, genital organ ; c, tarsus-all greatly enlargerl.

Eig. 23. Roeky Monntain Loenst (Caloptenus spretus Thomas) ; a, a, a, female in differcut positions, ovipositing; b, egg-pod extracted from ground, with the cud broken open, showing how the eggs are arranged ; c, a few eggs lying loose on the ground ; d, e, shows the earth partially removed, to illustrate an eggmass already in place, and one being placed ; f, shows where such a mass has been covered up.
Fig. 24. Rocky Mountain Locust (Caloptenus spretns Thomas); anal characters of female, showing thorny valves of owipositor; b, an mper valve ; c, a lower valve-all cnlarged.
Fic. 25. Rocky Mountain Locust (Caloptenus spretus Thomas) ; a, a, newly hatched larva; b, full growu larva; c, pupa.
Fig. 26. Red-legged Locnst (Caloptenus femur-rubrum, DeG.).
Fig. 27. Rocky Momntain Locıst (Caloptemes spretus Thomas).
Fig. 28. Rocky Mountain Locust (Caloptenus spretus Thomas); a, tip of abdomen of male, side view ; b, e, hind and top views of tip-all cnlarged.
Fig. 29. Red-legged locust (Caloptenus femur-rubrum DeGeer); a, tip of abdomen of male, side view ; b, c, hind and top view-all en!arged.
Fig. 30. Migratory Locust of Europe (Edipoda migratoria Lim.).
Fig. 31 (p. 142). Map of North America, illnstrating the country east of the Rocky Monntains sulject to the Ravages of the Rocky Monntain Locnst.
(Opposite p. 144.) Map of Missouri, illustrating the Loenst Invasion of 1874.
Fig. 32. Swarm of Locusts falling upon and devouring a wheat-field.
Fig. 33. Differential Locust (Caloptemus differentialis, Walk.).
Fig. 34. Two-striped Locust (Caloptemus bivittatus, Say).
Fig. 35. Silky Mite (Trombidium sericenm Say) ; natural size shown at side.
Fig. 36. Locust Mite (Astoma gryllaria LeBaron); greatly enlarged.
Fig. 37. Mitc parasitic on the House-fly (Trombidium muscarnu Riley) ; enlarged.
Fig. 38. Red tailed Tachina-fly (Exorista militaris Kirkp.)
Fig. 39. Flesh-fly (Sarcophaga sarracenice Rilcy); a, larva; b, pupa; e, fly; d, head and prothoracic joints of larva, showing curved hooks, lower lip (more cnlarged at g), and prothoracic spiracles; e, end of body of larva, showing stigmata (more enlarged at f), prolegs and vent; h, tarsal claws of tly with protecting pads; i, antenna of fly-all eularged.
Fig. 40. Seventeen-ycar Locust (Cicada septemdecim Linn.) ; one wing removedso as to show ovipositor, b; a, beak.

REPORT VIII.

Fig. 1. Lebia grandis Hentz.
Fig. 2. Peck's Spray Machine in operation. [From inventor.]
Fig. 3. Spring Canker-worm (I'aleacita rernata, Peck); a, caterpillar; b, cggs, natural size, one enlarged ; c, one joint of larva, enlarged, side view; d, same, dorsal view.
Fig. 4. Fall Canker-worm (Anisopteryr pometuria Harr.) ; a, b, egg enlarged, side and top views; c, l, joint of larva, enlarged, site and dorsal views; e, eggs, natural size ; f, caterpillar ; g, female.chrysalis; h, tip of chrysalis, enlarged.
Fig. 5. Spring Canker-worm ('aleacrita rernata, Peck), female chrysalis, enlarged.
Fig. 6. Fall Canker-worm (Anisopteryx pometaria Harr.) ; a, male, b, female chrysalis, enlarged; a dorsal view of the tip of each shown bencath.
Fig. 7. Spring Canker-worm (Paleacrita rernata, Peck) ; a, b, veuation of wings; c, one joint of male antenne, greatly enlarged.
Fig. 8. Fall Canker-worm (Anisopterys pometaria Harr.) : a, b, venation of wings; c, d, one joint of male anteme, greatly eularged, side and nuder views.
Fig. 9. Spring Canker-worm (Paleacrita rernata, Peck); a, male moth; b, female moth-nat. size ; c, portion of antenna of female ; d, one segment of female abdomen ; e, ovipositor-enlarged.

Fig. 10. Fall Canker-worm (Amsopterys pometaria Harr.) ; a, male moth; b, female moth-nat. size ; c, joints of female antenna; d, one joint of female abdo-men-enlarged.
Fig. 11. Canker-worm Trap, consisting of a band of tin attached to a circle of muslin.
Fig. 12. Canker-worm Trap, of tin and muslin; section. [From Country Gentleman.]
Fig. 13. Canker-worm Trap, of tin and muslin; section to show the mode of union of the tin and mnslin. [From Conntry Gentleman.]
Fig. 14. Canker-worm Trap, at base of tree-Section. [From Country Gentleman.]
Fig. 15. Canker-worn Trap, at base of tree. [From Conntry Gentleman.]
Fig. 16. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.) ; a, eggs; b, female moth ; c, egg, eularged, top riew: d, same, side view.
Fig. 17. Tent-caterpillar of the Forest (Clisiocumpa sglvatica Harr.).
Fig. 18. Army-worm (Lencunia unipuncta Haw.), nale genitalia; A, end of hody demoded of hairs, showing the upper clasps protruding, and the natural position of the hiddeu organs by dotted lines; B, the organs extended; c, upper valves ; d, lower valves; e, upper intermediate organ ; f, penis; g, back view of upper intermediate organ; h, imner surface of upper valves-all enlarged.
Fig. 19. Army-worm (Leucamia unipuncta Haw.) ; a, b, end of abdomen of female denuded of scales, showing the ovipositor withdrawn and exserted; c, terminal joint of ovipositor ; d, striations representing folds of the membrane, to facilitate expansion ; e, f, retractile subjoints ; h, eggs-all enlarged ; g, eggs, natural size.
Fig. 20. Army-worm (Leucania unipuncta Haw.), natural size when full grown.
Fig. 21. Army-worm (Leucania unipuncta Haw.), chrysalis.
Fig. 22. Army-worm (Lencania mipuncta Haw.) ; a, male moth; b, abdomen of femalenat. size ; c, eye, d, base of male antenna; e, base of female antenna-enlarged.
Fig. 23. Stalk-Borer (Gortyna nitcla Guen.) ; a, terminal joints of female abdomen denuded to show the exserted ovipositor ; b, view of the ovipositor from above.
Fig. 24. Unarmed Rustic (Agrotis sancia Trcit.) ; a. top view of egg, eularged; b, batch of eggs enlarged. [See Notes, etc., p. 55.]
Fig. 25. Unarmed Rustic (Agrotis saucia Treit.) ; a, ovipositor as it appears at the end of the abdomen ; b, same when extended.
Fig. 26. Fall Army-worm (Laplygma fragiperda, Sm. \& Abb.) ; a, full grown worm, nat. size ; b, head, front view ; c, one joint of body, dorsal view ; d, do., side view-cularged. [See Notes, etc., p. 56.]
Fig. 27. Fall Army-worm (Laphygma fragiperda, Sm. \& Abb.) ; a, the typical form; b, c, variations of wings.
Fig. 28. Elongate Ground-beetle (Pasimachus elongatus Lee.).
Fig. 29. Murky Ground-bcetle (Harpalus caliginosus, Fabr.).
Fig. 30. Fiery Ground-beetle (Calosoma calidum, Fahr.) ; a, larva; b, beetle.
Fig. 31. Rummaging Ground-beetle (Calosoma serntator, Fabr.). [After Harris.]
Fig. 32. Red-tailed Tachina-fly (Exorista leucanice Kirk.). [After Walsh.]
Fig. 33. Yellow-tailed Tachina-fly (Exorista flaricauda Riley).
Frg. 34. Microgaster militaris Walsh. [After Walslı.]
Fig. 35. Glassy Mesochorus (Mesochorus ritrens Walsh). [After Walsh.]
Fig. 36. Pezomachus minimus Walsh. [After Walslı.]
Fig. 37. Pezomachus minimus Walsh, bnuch of cocoons. [After Walsh.]
Fig. 38. Oplion purgatus Say.
Fig. 39. Rocky Mountain Locust (Caloptenus spretus Thomas): process of acquiring wings; a, pupa with skin just split on the hack; b, the imago extending; c, do., nearly out ; d, do. with wings expanded ; e, do. with all parts perfect.
Fig. 40. Acridium americamam, Drury.
Fig. 41. Coral-winged Locust ((Edipoda phanicoptera Germ.).

Fig. 42. White-lined Morning Sphinx (Deillphila lineata Fabr.), green larva.
Fig. 43. White-lined Morniug Sphinx (Deilephila lincata Fabr.), black larva.
Fig. 44. White-lined Morning Sphinx (Deilephila lineata Fabr.).
Fig. 45. Lubber Locust (Brachypoplus magnus Gir.).
Fig. 46. Green-striped Locust (Tragocephala viridifasciata) ; a, pupa; b, perfeet insect. Fig. 47. Granulated Gronse-locust (Tettix graumlata Scudder).
Fig. 42. Grape Plyyllozera (IPhylloxera rastatrix Plan.) ; a, female, ventral view, showing egg throngh transparent skin; b, do. dorsal view; c. greatly enlarged tarsus; d, shrunken anal joints as they appear after oviposition; c, male of Ph. caryectulis, Fitch ?, dorsal vicw-the dots in circle indicating natural size.
Fig. 49. Yucea Borer (Megathymus yucer, Walk.) ; a, a, fumnels made by the larva; b, under ground stem, showing thmelings of larva.
Fig. 50. Yucea Borer (Megathymus yucee, Wali.), femate moth.
Fit. 51. Yueca Borer (Megathymus yncea, Walk.) : a, egg, sidc view, cularged; b, egg from which the larra has hatched; $b b, b b b$, unhatched eggs-natural size ; c, newly-hatched larva, enlarged ; c c, full-grown larva, natural size; d, underside of head of same, enlarged to show the trophi.
Fifi, 52. Yueca Borer (Megathymus !urce, Walk.), pupa.
Fig. 53. Yueca Borer (Megathymns yncea, Walk.), moth walking.
Fig. 54. Yueca Borer (Megatlymus yncece, Walk.); a, b, renation of front and hind wings; c, labial palpus denuded; d, club of antenna; c, f, g, front, middle and hind legs,-all but wings enlarged.
Fig. 55. Cestnia phalaris (Fabr.), venation.

REPORTIX.

Fig. 1. Gooscberry Span-worm (Enfitehiat ribearia, Fitch.); a, b, larva; c, pupa.
Fig. 2. Gooseberry Span-worm (Eufitchiu ribeatia, Fitch), female moth.
Fig. 3. Gooseberry Span-worm (Eufitchia ribearia, Fitch); a, egg, eularged ; b,b, eggs, natural size.
Fig. 4. Imported Currant-worm (Nematns ventrieosus Klug); currant leaf showing eggs (1), and the holes which the roung worms make (2,3 , $)$. [From Practical Entomologist.]
Fig. 5. Imported Currant-worm (Nematus rentricosus Klug); a, a, a, larva; b, side view of one joint, cnlarged, showing black tubercles.
Fig. 6. Imported Currant-worm (Nematus rentricosus Klug); a, male fly; b, female fly.
Fig. 7. Soldicr-bug (Podisus placidus Uhler) ; a, cnlarged; b, natural size.
Fig. 8. Ovipositors of Sawflies; a, Willow-apple Sawtly (Nomatus salicis-pomum Walsh1) ; b, Currant-worm Sawfly (Nematus ventricosus Klug.), enlarged.
Fig. 9. Native Currant-worm (Pristiphora grossularice Walsh) ; a, larva, nat. size; b, Hy enlarged.
Fig. 10. Strawberry-worm (Emphytus maculatus Nort.) ; 1, 2. ventral and lateral views of pupa; 3, enlarged sketch of perfect fly, the wings on one side detalhed; 4, larva crawling, natural size; 5, perfect fly with wings folded, natural size ; 6 , larra at rest ; 7, cocoon; 8 , antenna, cularged; 9 , egg, enlarged.
Fig. 11. Abbot's Pine-worm (Lophyrus Abbotii Leach); 1, perfect fly, magnificd; the left wings removed; 2, 3, ventral and lateral views of pupa, enlarged; 4, larve in different positions, nat. size ; 5, cocoon, nat. size ; 6, antenna of male, enlarged; 7, antenna of female, enlarged.
Fig. 12. Map showing the distribution of the Colorado Potato-beetle (Doryphora decemlineata, Say).

Fig. 13. Ľopoda amcricana Riles; a, Colorado Potato-beetle attaeked by it-nat. size; b, the mite, ventral view, slowing the penetrating organ lying between the legs; c, the organs extended ; d, the elaw ; e, the exerematitious filament-all greatly eularged.
Fig. 14. Wheat-head Army-worm (Lencania albilinea Guen.) ; a, a, larvat; b, eggs-nat. size; c, d, egg, top and side view-enlarged.
Fig. 15. Wheat-head Army-worm moth (Lencania albilinea Guen.).
Fif. 16. Map of North Ameriea, illustrating the eomentry east of the Roeky Mountains overrun by the Roeky Mountain Loenst in 1876.
Fig. 17. Acridium americannu, Drmey.
Fig. 18. Roeky Momain Loeust (Calopteuns spretns Thomas); a, a, a, female in different positions, ovipositing; b, egg-pod extraeted from ground, with the end ; c, a few eggs lying loose on the ground; d, e, shows the earth partially removed, to illustrate an egg-mass already in plaee and one being plaeed ; f, shows where suelı a mass lias been eovered mp.
Fig. 19. Roeky Monntain Loenst (Caloptenns spretus Thomas) ; Anal eharaeters of female, showing horny valves of ovipositor; b, an upper valve; c, lower valve-all enlarged.
Fig. 20. Rocky Mountain Loenst (Caloptenus spretus Thomas) ; oriposition-i, superanal plate; h, sponge-like exsertile organ-the egg passing throngh the horny valves of the ovipositor, g.
Fig. 21. Roeky Mountain Locust (Caloptenns spretns Thomas), egg-mass, enlarged; a, side view within burrow, the line of exit of the young loensts shown at d and $e ; b$, egg-mass from beneath; c, same from above.
Fig. 22. Roeky Monntain Loeust (Calopteuns spretus Thomas); a, egg, enlarged to show seulpture of outer shell; b, portion of same very lighly magnified; c, the inner shell, just before hatching; d, e, points where it ruptures.
Fig. 23. Anthomyia Egg-parasite (Authomyia radicum, Linn., var. calopteni Riley); fly; b, paparium ; c, larva, side view; d, head of same, from above-enlarged.
Fig. 24. Bombyliid larva (Systheches sp.) ; a, enlarged ; b, head, side view, more enlarged ; c, do., front view ; d, posterior spiracle. [Sve Notes, etc., p. 60.]
Fig. 25. Harpalus? larva; a, from above; b, head, from beneath; c, leg-enlarged; d, antenna ; e, maxilla; f, labium.
Fig. 26. Harpalus? larva; A, natural size; B, under side of head, eularged; c, mandible; c, antenna; f, labium and labial palpi ; g, maxilla and maxillary palpi; h, joint 12 beneath ; i, joint 11 beneath ; j, joints $4-10$ each beneathenlarged.
Fig. 27. Pennsylvania Ground-beetle (Harpalns pensyltanicus, DeGeer).
Fig. 23. Erax bastadi Maeq.; a, larva; b, pupa.
Fig. 29. Aublychilu cylindriformis Say.
Fig. 30. Hellgraminite (Corydalus cormutus, Linu.) ; a, larra; b, pupa; c, tly, male ; d, liead of female fly.
Fig. 31. Hellgrammite (Corydalus cornutus, Linn.) ; a, a, egg-masses attaehed ; b, one detaehed, showing lower surface,-all rather below average size; c, a few eggs of the onter row; d, the newly-hatehed larva; e, labinm ; f, a nteuna; g, maxilla; h, mandible ; i, tarsal elaw ; j, anal hooks-all enlarged.
Fig. 32. Eggs of Belostoma?
Fıg. 33. Gigantic Water-bug (Belostoma graudis Limu.).

CLASSIFIED LIST OF IlıLUSTRATIONS.

The following list of illustrations, brought together in classificatory order, will prove serriceable to entomologists, as it will enable such to readily ascertain whether or not any particular insect of a particular Order has been figured in the Reports. The explanations to the figures are omitted, since they are already given in the preceding list. The nomenclature of the Reports is here, also, retained, and references to figures other than those of insects or their products are omitted. The number of the Report is indicated in Roman and of the figure in Arabic numerals.

HYMENOPTERA.

Oripositors of Sawflies: IX, З. Pristiphora grossularie Walsh: LX, 9. Nematus ventricosus Klug: IX, 4, 5, 6 . Emphytus maculatus Nort.: LX, 10. Lophyrus Abbotii Leach.: IX, 11. Aphelinns mytilaspidis Le Baron: V, 34. Trichogramma ? minuta Riley: III, 72. Autigaster mirabilis Walsh: VI, 43, 49. Chalcid sp.: I, pl. 2, Fig. 6.
Glyphe viridascens Wulsh: II, 24.
Isosoma ritis Sannders: I, 73; II, 64.
Isosoma hordei Harr. : II, 65.
Eurytoma bolteri Riley: I, pl. . 2 , Figs. Z, $9 ;$ I, 97,
Chalcis albifrons Walsh: II, 22.
Chalcis marise Riley: IV, 39.
Microgaster (=Apanteles) : II, 43.
Sicrogaster cocoons on Hog-caterpillar of the Vine (Chier. pampinatrix, Sm. \& Abb.): II, 47.
Nicrogaster militaris Walsh: I, 32; II, 23 ; III, 73 ; VIII, 34.
Aleiodes Rileyi Cress. : IIİ, 30.
Bracon charus Riley: VII, 13.
Macrocentrus delicatus Cress. : V, 27.
Sigalphus curculinuis Fitch: III, 7, e.
Pimpla annulipes Br.: Y, 26.
Cryptus samie P'ack: : IV, 40, 41.
Hemiteles (?) cressonii Riley: I, pl. 2, Fig.
7.

Hemiteles (?) thyridopterygis Iitley: I, pl. 2, Figs. 10, 11, 1 ?.
Pezomachus minimus Welsh: II, 20, 21; VIII, 36, 37.
Porizon conotracheli Riley: III, 9.
Mesochorus vitreus Talsh: II, 19; VIII, 35.

Ophion macrurum (Linn.) : IV, 37, 3-.
Ophion purgatus Sety: II, 25 ; VIII, :3.
Tiphia inornata Say: VI, 34.
Ammophila pictipenuis Hralsh: V, 73.
Stizus grandis $S a y, \quad, \quad:$ I, 13 .
Eumenes fraterna Sity: II, 71.
Polistes rubiginosus st. Furg. : V, N.
Vespa maculata Linn.: V, 2.
COLEOPTERA.
Amblychila cylindriformis Suy: IX, ©9.
Tetracha virginica Hope: I, 69.
Calosoma serutator (Fabr.) : II, 69 : III, 54; VIII, 31.
Calosoma calidum (Fubr.): I, 34, 60; II, 70; VIII, 30.
Pasimachus elongatus Lec. : I, 61; VIII, 28.

Aspidoglossa subangulata C'uand.: I, 21.
Lebia grandis Hent: : III, 41; VIII, 1.
Harpalus caliginosus Suy: I, 62: VIII, 29.
Harpalus pensslranicus (Defieer): I, 33 ; IX, 27.
Harpalus? larra: I, 으 ; IX, 25, 26.
Quedius molochinus (Grar.): $1 \mathrm{~V}, 12$.

Gerins olens: IV. 11.
Philonthus apicalis (Say): IV, 10.
Dermestes lardarins Linn.: VI, 27.
Ifipporamia maculata (DeGeer) : I, 29 ; II, 3; VII, 5.
Hippodania convergens Guer.: I, 52 ; VI, 11.

Hipporlamia glacialis (Fubr.): IV, 5.
Hippodamia 13-punctata (Linn.): I, 51.
Coccinella 9-notata Herbst: I, 50.
Coccinclla munda Say: II, 4 ; VII, 6.
Coccinella picta Rendell: Y, 37.
Mysia 15-imuctata (Oliv.): IV, 4.
Chilocorns bivnlnerns Muls: I, 4, 5.
Laḑ̣ird larva: I, 53.
Passalus cornutus Fabr:: IV, 62.
Macrodactylus subspinosns (Fabr.): V, 39.
Lachosterna quercina (Rnoch): I, 88.
White Grub attacked by fungus: I, 89 .
Pelidnota punctata (Limn.): III, 34.
Cotalpa lanigera (Linn.): $\boldsymbol{V}, 3$.
Chrrsolmothris femorata ($F u b r$.): I, 15, 16 ; VII, 12.
Chaulingnathns pensylvanicus (DeGeer): I, 19; IV, 14.
Telephorus bilincatus (Suy): IV, 15.
Corynctes rufipes (Fabr.): VI, 26.
Sinoxylon basilare (Suy): IV, 26, 27.
Bostrichus bicandatus (Say): IY, 24.
Orthosoma crlindricnm (Fabr .) : I, 69.
Prionns laticollis (Drury) : I, 67 ; II, 60, 61, 62.

Prioms imbricornis (Lim.): II, 63.
Saperda bivittata Say: I, 14.
Bruchus pisi Linn.: III, 15, 16, 17.
Brnclus granarius Jimn.: III, 18.
Bruchus fabre Riley: III, 19.
Lema trilincata (Olir.): I, 42, 43.
Coscinoptera dominicana (Fabr.): VI, 36.
Chlamys plicata (Olic.): VI, 37.
Fidia viticida Tulsh: I, 75.
Colaspis flavida Say: III, 37,38 ; IV, 16.
Doryphora 10 -lineata Say: I, 46.
Dorephora juncta (Germar): I, 47.
Dialrotica 12-punctata (Olic.): II, 42.
Dialrotica vittata (Fabr.): I, 44; II, 39, 40, 41.
Haltica chalyhea Illiger: III, 35, 36.
Haltica cucumeris Marr.: I, 45.
Blepharida rhois (Forst.): VI, 33.
Chelymorpha cribraria (Fulbr.): II, 28, 29.
Phesonota quinquepunctata Walsh \& Riley: II, 30.
Cassida nigripes Olir. : II, 37, 38 .
Cassida bivittata Say: II, 27, 3 ?

Cassida anrichalcea (Fabr.) : II, 31, 33, 34.
Cassida guttata Olic.: II, 35, 36 .
Deloyala clavata (Olir.) : II, 26.
Larva of Tenebrionid (?): VI, 32.
Lytta cinerea Fabr.: I, 40.
Lytta vittata Fabr.: I, 39.
Lytta marginata Fabr.: I, 41.
Epicerns imbricatns (Say) : III, 21.
Ithycerns novaboracensis (Forster): III, 20
Anthonomns prunicida Walsh: III, 13.
Anthonomus quadrigibbus Say: III, 10, 11.
Conotrachelus nemphar (Herlst): I, 18; III, 1.
Conotrachelus cratregi Walsh: III, 12.
Analcis fragarie Riley: III, 14.
Cotiodes intequalis (Sty) : I, 70, 71, 7%.
Baridius trinotatus Say: I, 37 .
Baridius sesostris Lec.: I, 74.
Eupsalis mimnta (Drury): VI, 31.
Sphenophorns ze:e Talsh: III, 20.
Sphenophorns pulchellus Schơn: III, 23.
Scolytus carye Riley: V, 33.

LEPIDOPTERA.

Papilio philenor Drury: II, $84,85,86$.
Pieris protodice Boisd.: II, $72,73,74$.
Pieris oleracea Boisd. : II, 75, 76.
Pieris rapte Schrank.: II, $77,72,79$.
Danais archippus (Fubr.): III, 63, 64,65, 66, 67.
Limenitis disippus (Godt.): III, 63, 69, 70.
Apatura lycaon (Fubr.): VI, 39, 40,
Apatura herse (Fabr.): VI, 41, 42.
Paphia glycerium Doubl.: II, 94, 95, 96; V, 72.
Megathỵmus suce:e Walk: : VIII, 51,52, 53, 54 .
Castnia phalaris (Fubr.) venation: VIII, 35.

Thyreus abboti Sưanson: II, 54.
Deilephila lineata (Fubr.): III, 60, 61, 62; VIII, 42, 43, 44.
Cherocampa pampinatrix (Sm. \&f Abb.): II, 44, 45, 46.
Philampelus satellitia (Linn.): II, 52, 53.
Philampelns achemon (Drury): II, 49, 50, 51.

Sphinx 5-maculata Haw. : I, 3s.
Ngeria exitiosa Say: I, 17.
Egeria polistiformis Harr.: III, 33.
Egeria rubi Riley: VI, 30.
Egeria acerni (Clem.): VI, 29.
Alypia octomaculata (Fobr.): I, pl. 1, Fig. 18; II, 55; VI, 25.

Psychomorpha epimenis (Drury): I, pl. 1, Fig. 19; III, 26; VI. 20, 21.
Endryas unio (IÏ̈bn.): II, 5 ; VI, 24.
Eudryas grata (Fubr.): II, 56; VI, 2:, 2:3.
Procris americama Boisd: II, 58, 59.
Deïopeïa bella (Drıry): V, 4.
Callimorpha fulvicosta Clem. : III, 56.
Aretia isabella (Smith): IV, 65.
Spilosoma virginica (Fabr.): III, 2४.
Hyphantria textor Harr. : III, 5 .
Eepantheria scribonia (Stoll): IV, 63, 64.
Orgyia lencostigma (Sm. sf Abb.): I, $81,8_{2}$, 83.

Theridopteryx ephemeraformis Huw.: I, 81.

Bombyx mori Linn. : IV ${ }^{+}$29, 30, 31, 32.
Attacns polyphemas Linn.: IV, 50, 51, 52, 53, 54.
Attacus luna Limm: IV, 47, 43, 49.
Attacus vana-mä (cinér-Mén.): IV, 55, 56, $57,55$.
Attacus Pernỵi (Guér-Mén.): IV, 60, 61.
Attacns cynthia (Hïbn.): IV, 4 ?.
Attacus promethea Drury: IV, 43, 44, 45, 46.

Attacus cecropia Linn. : IV, 33, 34, 35, 36 .
Hemilenca maia (Drury) : V, 60, 61, 62.
Hyperchicia io (Fabr.); V, 63, (64, 65, 66.
Dryocampa rnhicunda (Fubr.): V, 6 z.
Clisiocampa americana Harr.: III, 50,51 ; Y, 29 .
Clisiocampa sylvatica Harr. : II, 11 ; III, 52,53 ; V'III, 16, 17.
Acronycta popali Riley: II, 87, 82,
Acronycta oblinita (Sm. \& Abb.) : III, 29.
Agrotis sulgothica (Haw.): I, 29 .
Agrotis jaculifera (iuen.: I, pl. 1, Fig. 11.
Agrotisscandens Riley: I, pl. 1, Figs. 5, 6, 7.
Agrotis cochranii Riley: I, 26.
Agrotis inermis Harr.: I, pl. 1, Figs. 1, 2, 3,4 .
Agrotis saucia Treit. : III, 49; VIII, 24, 25.
Agrotis telifera Herr: : I, pl. I, Figs. 8, 9, $10 ; \mathrm{I}, 28$.
Noctua clandestina Harr. : I, pl. I, Fig. 13 ; I, 27.
Hadena subjuncta Gir. \& Rob.: I, pl. I, Figs. 14, 15, 16, 17.
Agrotis devastator (Brace): I, 30 .
Pupa of Cut-worm in earthen cell: I, 25.
Mamestra picta Harr. : II, 82.
Celiena renigera Steph. : I, $\mathbf{3}$,
Prodenia commelinie (Sm. \& $\mathrm{A} b b$.): I, pl. I, Fig. 12; 1II, 48.
Gortyna nitela Guen.: I, 33, 36 ; VIII, 23.

Lencania albilinea Giuen. : IX, 14, 15.
Lencania mipmeta Haw:: II, 14, 15, 16; III, 47 ; VIII, 1-, 19, 20, 21, 22.
Prodenia antmmualis Riley: III, 4.5, 46 ; VIII, 26, 27 .
Amphipyra pyramidoides Guen.: İII, 31, 32.

Anomis xylina (Say): II, 12, 13.
Xylina cinerea Riley: III,57.
I'lusia brassica Riley: II, 81 .
IIeliothis armigera Hiiln.: 1II, 4?, 43.
Anisopteryx pometaria Harr:: Y II, 17, 1 ; VIII, 4, 6, s, 10 .
Paleacrita vernata (Teck): VII, 14, 16; VIII, 3, 5, 7, 9 .
Aplodes rubivora Rilcy: I, pl. 2, Fig. 25.
Hirmatopis grataria (Fubr.) : I, pl. 2, Figx. $18,19,20,21$.
Enfitchia ribearia (Fitch): IX, 1, 2, 3.
Asopia costalis (Fubr.): VI, 23.
Pempelia Hammondi Riley: IV, 21 .
Pempelia grossularice Pack.: I, pl. 2, Fig. 17; I, 70.
Phycita nebulo Walsh: IN, 1е, 19.
Acrohasis juglandis Le Fiaron: IV, 20.
Galleria cereana Fabr.: I, 92.
Desmia maculalis Westr.: III, 24.
Phacellura nitidalis Cram.: II, 43.
Tortrix cinderella Riley: IV, 22.
Tortrix rileyana Grote: I, 11. 2, Figs. 3, 4; I, 85.
Penthina vitivorana Pack.: I, pl. 2, Figs. 29,$30 ;$ I, 76.
Euryptychia saligneana Clem.: II, 99.
Carpocapsa pomonella (Limn.): I, 24.
Anchylopera fragarise Walsh of Riley: I, 11. . 2, Figs. 26, 27; I, 80.

Promuba yuccasella Riley: V, 74,75 ; YI, 38.

Walshia amorphella ('lem: Il, 9 .
Gelechia gallersolidaginis Riley: I, pl. Q, Figs. 1, 2; I, 96.
Holcocera glandulella Ritey: IV, 66.
Bucculatrix pomifoliella Clem.: IV, 23.
Pterophorns periscelidactylus Fitch: I, pl. 2, Figs. 15, 16 ; III, 27.
Pterophorus cardui Riley: I, pl. II, Figs. 13,$14 ;$ I, 95.

HETEROPTERA.

Corimelana pulicaria (Germar): II, 9; VII, 11.
Stiretrus fimbriatus (Say): I, 5, $6 ;$ II, 10 .
Perillus circumeinctus Stàl: IV, 6.

Arma spinosa Dallus: I, 33, 54; II. 7 ; IV, 8,9 .
Podisus placidus Chler: $\mathrm{XX}, 7$.
Euschistus punctipes, Say: IV, 7; V, 5.
Strachia histrionica Halu: IV, 17.
Corens tristis (DeGeer): I, 55.
Nysius destructor Riley: V, 41 ; VII, 9.
Micropus leucopterus (Say): II, 1, 2; V, 40 ; VII, $2,3,4$.
Campyloneura vitripemnis (S:y): III, 53, 59.

Capsus oblincatus Say: II, 83.
Authocoris insidiosus (Sty) : II, 6; VI, 14; VII, 7.
Redurins raptatorius Suy: I, 5 .
Harpactor cinctus (Fubr.): I, 57; VII, 8.
Piesma cinerca (Say): II, \&; VII, 10.
B slosto:na grandis Linn.: IX, 33 .

HOMOPTERA.

Cicada septemdecim Linn.: I, 6, 7, 13; VII, 40.
Cicada tredecim Lim.: I, 11.
(Ueresa bubahus (Fubr.): V, 6,50,51,52.
Pceciloptera pruinosa (Su(y): V,54,55.
Peuphigus vagabundus (Walsh): I, 65.
Eriosoma pyri Fitch: I, 64.
Phylloxera vastatrix Planchon: III, 39, 40; IV, $28 ; \mathrm{V}, 30$; VI, $2,3,4,5,6,7,8$; VIII, 48.

Phylloxera caryexanlis (Fitch)?: VII, 19.
Phylloxera rilcyi Lichn.: YI, 18, 19; VII, 22.

Aspidiotus conchiformis (Cmétir): I, 2,3; V, 31 .
Mytilaspis pomicorticis Riley: $\mathrm{I}, 2,3 ; \mathrm{V}$, 31,32.
Aspidiotus harrisii (Tulsh) : I, 1.
Mytilaspis pinifolie (Fitch): V, 35, 36.

DIPTERA.

Gall, Vitis-tomatos Riley=Lasioptera vitis O.S. : V, 4.).

Gall, Vitis-viticola Riley=Cecidomyia viticola O. S.: V, 46.
Gall, Cecidomyia salicis-strobiloides Welsh: V, 43.
Gall, Vitis-coryloides $W . \&$ R.: V, 44.
Gall, Vitus-pomum Ir. \&-R.: V, 42.
Tabaus atratus Fabr.: II, 97.
Wing of Promaclus (a), Asilus (b), Erax (e) : II, 90.

Trupanea apivora Fitch: I, 93.
Erax bastardi Mueq.: II, 92, 93; IN, 28.

Asilus missouriensis Riley: II, 89; V, 7.
Asilus scricens Say: II, 91.
Bombyliid larva (Systrechus sp.) : IX, 24.
Pipiza radicum W.f. $R .: \mathrm{I}, 66 ;$ VI, 15.
Syrphus larva: VI, 12.
IIelophilus latifrons Loew: VI, 13.
Estrus ovis Limn.: I, 91 .
Exorista lencanier Kirk.: II, 17: VII, 33; VIII, 32.
Exorista llavicauda Riley: II, 18; VIII, 33.

Lydella doryphorer Riley: I, 45.
Belvoisia bifasciata (Fubr.) : V, 68 .
Sarcophaga sarracenie Riley: VII, 39.
Anthomyia radicum (Linn.), var. calopteni Hiley: IX, 23.
Anthomyia ze:e Riley: I, pl. II, Fig. 24; I, 86, 87.
Meromyza americana Fïtch: I, pl. II, Fig. 2マ ; I, 90 .

ORTHOPTERA.

(Ecautlus nivens Harr: I, 77, 78; V, 49.
Orocharis saltator C"hler: V, 47, 48.
Phaneroptera curvicauda ($n e(i c e r$): VI, 50, 51.
Phylloptcra oblongifolia (Defeer) : VI, 55.
Microcentrus retincrvis (Burm.): V, 57, 58; VI, 43, 44, 45, 46, 47.
Platyphyllum concavum Marr: V, 59; VI, 52, 53, 54.
Orchelimum glaberrimum (Burm.) : V, 56.
Acridium americaumm (Drury): VIII, 40 ; IX, 17.
Caloptenus spretus Thomas: VII, 23, 24, 25, 27, 28 ; VIII, 39 ; IX, 18, 19, 20, 21, 22.
Caloptenus femur-rubrum, DeG. : VII, 2G, 29.

Caloptenns differentialis Walk:: $\mathrm{V}, 8$; VII, 33.
Caloptenus bivittatus (Say): VII, 34.
Brachypeplus magnus Cir.: VIII, 45.
Edipoda migratoria Linn.: VII, 30.
Edipoda plenicoptera Germ.: VIII, 41.
Tragocephala viridifasciata Marr.: VIII, 46.

Tettix granulata Scudder: VIII, 47.
Mantis carolina (Limn.): I, 94, 95.

NEUROPTERA.

Libellula trimaculata (HeGcer): V,9.
Corydalus cornutus (Lim.) : V, 69, 70, 71; IX, 30, 31.
Chrysopa sp.: I, 20; II, 5; VI, 10.
Thrips spl.: VI, 9.

ARACHNIDA.
Phalangium dorsatum Suy: IV, 3.
ACARINA.
Trombidium muscarum Riley: YII, 37.
Trombidium sericeum Say: VII, 35.
Tyroglyphus phylloxerse Planchon \& Riley: VI, 16.

Nothrus ovivorus Pack: : II, 68.
Leptus irritans Riley and L. americanus Riley: VI, p. 122.
Uropoda americana Riley: IX, 13.
Dermaleichus ?: V, 33.
Astoma gryllaria Le Berron: VII, 36.
Hoplophora arctata lilley: VI, 17.

GENERAL INDEX.

In this general index each report is referred to in Roman and the page in Arabic numerals. The index to the new matter of this Bulletin is also included and referred to by the abbreviation "Supp."

A.

Ablot Sphinx, II, 78
Abbotii, Lophyrus, IX, 32, Supp., 65
Thyreus, II, 78
Abbots' White Pine Worm, LX, 29
Descriptive, IX, 32.
Natural History, IX, 30
Nataral Enemies, IX, 31
Remedies, LX, 32
Abraxas grossulariata, IX, 5
Acarus mali, II, 6
malus, I, 16, V, 87
scabiei, VI, 61
Walshii, V, 87
acericola, Acronycta, II, 121
aeerni, Aegeria, V I, 107, 108, Supp., 53
Trochilium, VI, 108
achemon, Philampelus, $\Pi, 74$
Achemon Sphinx, II, 74,78
Aohreioptera, a proposed order of insects, $\nabla, 16$
Acidalia persimilata, VI, 138
Acoloithus falsarius, II, 86
Acorn Moth, IV, 144
Acridide, Stridulation of, VI, 153
Acridii, VIII, 115, 128
Acridium americanum, VII, 173, 174, VIII, 103, 104, IX, 84
peregrinum, VII, 133, V III, 144, 145
spretis, V II, 128
spretum, VIII, 128
Acridophagi, VILI, 144
Aerobasis, IV, 46
eonsociclla, IV, 45
Hammondii, III, 7
juglandis, IV, 42, 43, V, 49, Supp., 67, 80
nebulo, IV, 38, 47, Supp., 79, 80
nebulella, IV, 42, Supp., $\varepsilon 0$
Acronycta, II. 119
americana, II, 121, Supp., 73, 74
interrupta, II, 121, Supp., 73
leporina, II, 121, Supp., 73
lepusculina, II, 121, Supp., 73, 74
leutiocoma, V, 126
oblinita, III, 70, 71, V, 126
occidentalis, II, 121, V, 126, Supp., 73
populi, II, 119, 120, Supp., 72, 74
psi, II, 121, Supp., 73
tridens, II, 121, Supp., 73
xylinoides, V, 126
acronyctre, Microgaster, II, 120
Act to provide for the destruction of Locusts in
Minnesota, IX, 114

Act to encourage the destruction of Locusts in Missouri, LX, 111
Acts to provide for the destruction of Locusts in Kansas, IX, 112, 113
Actias luna, IV, 123
Aculeata, a section of Mymenoptera, V, 9
Address before the Farmers of Cass County, Mis. souri, VIII, 66
Address before the National Agricultural Congress, VI, 17
Adephaga, a section of carnivorous beetles, $V, 11$
Adkins, F. D., Experience of, with Rocky Mountain Locust, V III, 126
Adkins, James, Report on Rocky Mountain Locust, IX, 74
Adoneta, VI, 140
spinuloides, V, 126
adonidum, Coccus, III, 96
EEgcria, VI, 108
acerni, VI, 107, Supp., 55
cucurbitce, II, 64
exitiosa, I, 47
polistiformis, I, 127, III, 75, 76
rubi, VI, 111, 113, Supp., 72
tipuliformis, II, 10, VI, 108, IX, 2
Egeridee, V, 41
Egiale, VIII, 170
indecisa, VIII, 179
Kollari, VIII, 179
anea, Lytta, III, 6
«qua, Agrotis, I, 74
Eschna, Oviposition of, VIII, 37
ascularia Anisopteryx, VIII, 17, Sapp., 56
astiva, Dendroica, VI, 27
Aftleck, Thos., on Cotton Worm, II, 38, 40, VI, 24
Rocky Mountain Locust, VII, 139, 191
affusana, Pcedisca, Supp., 57
Agassiz, Professor, on mimicry, III, 73
Agelaius phøeniceus, VI, 27
Ageratum, VI, 138
Aglaope americana, II, 85
Agriculture, relation of insects to $, ~ V, 18$
Agrion, oviposition of, VIII, 36
Agrotis, I, 68, Supp., 55
equa, I, 74
Cochranii, I, 74, Supp., 76, 77
cursoria, I, 78
dcuastator, I, 83, Supp., 56
herilis, Supp., 55
inermis, I, 72, 74, II, 50, III, 15, 114, 129 VII, 37, Supp., 55

Agrotis jaculifera, I, 82, 83, Supp., 56. lycarum, Supp., 77
maizi, I, 81
messoria, Supp., 77
murcenula, I, 78
nigricans, I, 81, 83, 87
ortonii, Supp., 55
repentis, Supp., 77
saucia, I, 74, Supp., 55
scandens, I, 76, 78, III, 6, Supp., 75
subgothica, I, 81, 83, III, 151, Supp., 55 ; 56
suffusa, Supp., 55
telifera, I, 80, Supp., 5 5
tricosa, Supp., 55
ypsilon, Supp., 55
Ailanthus Silkworm, IV, 112
Best method of raising, IV, 119
Difference between Castor bean and Ailan. thus Worms, IV, 112
Larval ehanges, Π, 117
Natural History of, IV, 117
Retrospeetive History of, IV, 113
Thoroughly acelimated in America, IV, 115
Value of the Cocoou, IV, 115
W'hen iutroduced into Ameriea, IV, 114
Ailanthus Worm, I, 151
alabamce, Chrysobothris, VII, 71
Albany Argus, article from, on Arms Worm, II, 43, VIII, 26
albifrons, Chalcis, II, 52, VIII, 54
albilinea, Leucania, IX, 55
albivenosus, Micropus, VII, 22
albolineata, Synchlora, Supp., 79
alboscutellatus, Bruchus, Supp., 71
alcece, Erynnis, VIII, 182
Aleochara anthomyice, IV, 22
Aleiodes Rileyi, III, 71
Aletia argillacea, VIII, 23, Supp., 56
alicia, I patura, VI, 145, 150
Alkalies for Grape-vine Root-liee, IV, 69
Allen, T. R., Experience of, with Grass Cut-worm, I, 80
ou Army Worm, II, 47, V III, 52
Wheat Cut Worm, I, 87
Allen, G. W., ou Rocky Mountaiu Locust, VIII, 102
Altica virginica, VI, 122
Alucitide, III, 67
Alypia octomaculata, I, 136, II, 80, 82, VI, 88, 91,95
A mara angustata, VIII, 52
obesa, Supp., 52
ambiguella, Conchylis, Supp., 57
A mblychila cylintriformis, IX, 98
Ambulatoria, a divisiou of Orthopterons inseets, V, 14
americana, Acronycta, II, 121, Supp., 73, 74
Aylaope, II, 85
Apatcla, II, 121, Supp., 73, 74
Clisiocampa, II, 7, III, 117
Clostcra, II, 19, VII, 27
Ctenucha, II, 85
Meromyza, I, 59
Parula, VI, 27
Procris, II, 85
Silpha, VI, 100
Eropoda, IX, 41

American Acrilium, VIII, 103, IX, 84
Agriculturist, article from, on grass. hoppers, VII, 172
article from, on Remedy for Curraut Worm, IX, 15
article from, ou Yucca fertilization, V, 159
Bacon-hcetle, VI, 100
Bean-weevil, III, 52
Blight, III, 95, IX, 43
Carrion-beetle, VI, 100
Copper Uuderwing, III, 72
Cuckoos, III, 121
Entomologist, article from, on Bean weevil, III, 53
article from, on Colorado Potato-beetle, III, 97
article from, on Cureulio extermination, III, 15
article from, on imported and native iusects, II, 8
article from, on Strawberry Leaf-roller, I, 142
Meat Worm, IS, 43
Meromyza, I, 159, II, 16
Naturalist, article from, on Birds destroying Canker Worm, VI, 27
article from, on injury caused by Alypia, II, 81
Oak Phylloxera, VI, 64, VII, 99, 118 riII, 158
Plants and Insects aeclimated in Europe, IX, 43
Procris, II, 85, 86, 87
Silk-worm, IT, 104
Tent-caterpillar, eggs of, V, 55
Timber-beetle, III, 7
vines, first suggestion to use in France as a remedy for Phylloxera, I V, 62
viues in France, VI, 79
americanum, Acridium, VII, 173, 174, VIII, 103, 104, IX, 81
americanus, Chauliognathus, Supp., 53
Coccyzus, IlI, 121, VIII, 124
Hylcceetus, III, 7
Ammophila pictipennis, V, 149
ameentm, Callidium, I V, 54
amorphella, Walshia, I I, 132, 133
Ampelis cedrorum, VI, 27
garrulus, VII, 90
A mpeloglypter sesostris, Supp., 71
ampelopsis, Madarus, I, 132
Amphicerus bicaudatus, IV, 51, V, 51
Amphipyra conspersa, III, 75, Snpp., 75
inornata, III, 75
pyramidea, III, 73, 74
pyramiloides, ILI, 72, 74, Supp., 75
Amphydasis cognataria, IX, 7
Amputating Broeade-moth, I, 87
amputatrix, Hadena, I, 87
Amydria, $\mathrm{V}, 151$
Analcis, III, 44
fragarife, III, 42, 44, Supp., 71
Anaphora, 「, 151

Anasa, Supp., 58
Anatis, Supp., 53
Anchylopera comptana, I, 143
fragarie, I, 142, Supp., 57
Andrews, W. V., on Eight-spotted Forester, II, 81 Angerona crocataria, L工, 7
Angnlar-winged Katsdid, VI, 155
Description of immature Stages, VI, 161
Natural Enemies, VI, 162
angulifcra, Callosamia, IV, 122, 128, Supp., 55
Angns, Jas., on Bean weevil, III, 52
angustata, Amara, VIII, 52
angustatus, Nysius, Supp., 85
angustifrons, Anthomyia, Supp., 89
Animal Kingdom, Classification of, V, 6
Anisonyx rufa, VI, 143
Anisopteryx cescularia, VIII, 17, Supp., 56
pometaria, II, 97, VI, 29, VII, 80, 83 , 86, VIII, 13, Supp.. 56
vernata, I, 109, II, 94, VI, 28, VII, 80 , 86
Anisota rubicunda, V, 137, 140
stigma, V, 126
Anobium, III, 7, VI, 101
Anomalon apicale, $\mathbf{I N}, 55$
Jlavicome, III, 69
Anomis, VI, 24
xylina, II, 37, Y, 19, VI, 17, VIII, 23, Supp., 56
anonyma, Tachina, IV, 129, V, 133, VII, 178, VIII, 179
Anonymous Tachina-fly, VII, 178
Annelida, V, 6, 7.
annulata, Brochymena, IV, 20
annulipes, Pimpla, IV, 43
Anthercea, IV, 114
Pernyi, IV, 137
Paphia, IV, 138
yama-mai, IV, 130
Anthocoris, VII, 47
insidiosus, II, 27, 32, VI, 51, VII, 41, Supp., 58
Anthomyia, III, 150
angustifrons, Supp., 89
brassicee, I, 156, IV, 22, 35, IX, 95
ccparum, I, 155, II, 9, IX, 95
radicum, IX, 92, Supp., 88
var. calopteni, LX, 92, Supp., 88
raphani, IX, 95
zcce, I, 154, Supp., 89
Anthomyia Egg-parasite of Locnst, IN, 92 anthomyice, Aleochara, IV, 22
Antkonomus pomorum, III, 11
prunicidd, III, 39, Supp., 54
pyri, III, 11
quadrigibbus, III, 29, 35
scutcllaris, Supp., 54
signatus, V, 154
suturalis, III, 60
Anthony, J. Mr., on Army Worm, VIII, 39
Anthribus varius, III, 10
Antidote for Paris green, IV, 13
Antigaster mirabilis, VI. 162, 163, Supp., 52
Ants, V, 9
Apanteles, Snpp., 52, 66

Apatela americanf, II, 121, Supp., 73, it
A patura alicia, VI, 145, 150
celtis, VI, 139, 142, 150
clyton, 142, 150
lucrse, VI, 136, 137, 140, 148, 150
idyja, VI, 145
iris, V I, 136
lycaon, V I, 136, 137, 146, 150
proscrpina, VI, 145, 150
Apheniptera, V, 15
A phelinus mytilaspidis, V, 88,100
Aphide, V, 68, 85, VII, 27
Aphidian Hiekory galls, $\mathrm{V}, 154$
Aphidide, VI, 31, 33
Aphis, II, 19, III, 96, V, 149
avence, II, 5, 6, 10
brassica, II, 10, IV, 36
mali, II, 6, 10, III, 6
ribcsii, VI, 46
ribis, II, 10, IX, 2
vitis, I, 13
Aphis, Currant, VI, 46
Wooly, IV, 100
Aphodius, VI, 124
apiarius, Clerus, VI, 101
apicale, Anomaton, IX, 55
apicalis, Philonthus, IV, 21
Apiomerus, IX, 98
Apion apricans, IlI, 11
Apis mellifica, V, 18
apivora, Trupanea, I, 168, II, 122, Supp., 60
Aplodontia leporina, VI, 144
Aplodes rubivora, I, 139, Supp., 79
Apple Bud-moth, III, 6
Curenlio, III, 6, 29, 30, 32, 33, 39
Its natural history, III, 30
It transforms in the frnit, III, 31
Remedies, III, 34
Season during which it works, III, 34
The amonnt of damage it does, III, 33
gall, Grape-vino, V, 114
growing on Grape-vinc, V, 115
insects, III, 6
leaf Bucculatrix, IV, 49
remcdies for, IV, 50
Folder, The Lesser, IV, 47
Skeletonizer, IV, 44, 47
remedies for, IV, 45
Tser, IV, 46
Maggot, III, 6, 9
Maggot Fly, I. 108
Micropteryx, III, 7
Midge, III, 6
Plant-louse, III, 6
Root-lice, III, 95, IV, 68, 69
Plant-louse, I, 118
Artifieial remedies for, I, 123
Natural remedies for, I, 121
Syrphus fly, I, 121
tree Bark-louse, I, 7, IlI, 93
borer, Flat-headed, I, 46, VII, 71
Remedies for, I, 47
Round-headed, I, 42, IV, 124
V1I, 27
boret, Remedies for, I, 45
Borers, I, 42

Apple-tree Plant-louse, II, 6, 10
Root-louse, II, 15, VI, 52
Tent-caterpillar, II, 11, III, 117, 121
twig Borer, IV, 51, V, 54
Worm, I, 62, II, 6, 19, III, 6, $33,90,102$, VII, 27
Again, IV, 22
Attacks peaches, V, 49
False doctrines about, V, 51
In California, V, 49
Natural Enemies, V, 49
Parasites, V, 49
Remedies, I, 65
Traps, V, 46
apricans, Apion, III. 11
apterus, Micropus, VII, 22
aquana (Spilonota), Supp, 57
Arachnida, V, 6, 7
archippivora, Tachina, III, 116, 150
Archippus, III, 168, 169, V, 148
Buttertly, II, 125, III, 143
How the larva becomes a chrysalis, III, 146
It often congregates in immense swarms, III, 151
Its natural history, III, 143
The larva enjoys immunity from the attack of predaceous animals, III, 148.
Tachina-fly, III, 150
archippus, Danais, I1I, 143, 167, IV, 129, Supp., 55
arctata, Hoplophora, VI, 53, 81, VII, 106
Arctia Isabclla, IV, 143, Supp., 55
Arctomys rufa, VI, 143
arcuata, Ortalis, II, 9
argillacea, Aletic, VIII, 23, Supp., 56
Argynnis, III, 103
diana, III, 169, 171
Arkansas, Locusts in, IX, 76
Arma modesta, V, 133
spinosa, I, 77, $89,113, \mathrm{II}, 32, \mathrm{IV} .19, \mathrm{~V}, 51$, Supp., 58
armigera, Hcliothis, III, 45, 104, IV, 129
Arment, A. B., on Rocky Mountain Loenst, IX, 119
Arnott, M. A., on Focky Mountain Locust, IX, 117
Arrenotoky in the Imported Currant-worm, IX, 18
Arrhenodes septentrionis, VI, 116
Arsenious acid for Potato-bugs, IV, 14
arthemis, Limenitis, III, 171
Arthropoda, $\nabla, 6$
Articulata, $\mathrm{V}, 6$
Army Grasshopper, VII, 194
Worm, I, 89, 109, II, 5, 37, 70, 103, 110, III, $110,125,128, \mathrm{~V}, 22,25,68,7 \mathrm{III}, 22,182$, LX, 49
Additional Notes on Mode, Place, and Time of Oviposition, VIII, 182.
Are there one or two Broods each year?, VIII, 47
Completion of its Natural History, VIII, 182
Correspondents quoted, III, 109, VIII, 39
Description of the Egg, VIII, 34
Larval Stages, VIII, 184
Fall Army-worm, VI, 17, VIII, 23, 35, 49

Army Worm, Further Notes and Experiments on, LX, 47
Habits of the Worm, VIII, 45
Ichueumon Fly parasitic, on II, 53, 54
Its History in 1875, VIII, 28
Missouri in 1875, VIII,
Its Sudden Appearance and Disappearance, II, 45, VIII, 50
Microgaster parasite of, III, 158
Natural Enemies, VIII, 52
History, II, 47, VI11, 32
Nomenclature, VI1I, 22
Northern, VIII, 24
Parasites, II, 50
Parent Moth, II, 11, 48
Past History; II, 41, VIII, 24
Plants Preferred by the, VIII, 49
Remedies, V III, 54
Sexual Differences, VIII, 30
Summary of Natural History, VIII, 56, LX, 49
Tachina-Fly parasitic on, IV, 109, VIII, 53
the term "Arany Worm" applied to various Insects, V III, 23
time of Appearance, VIII, 46
Wheat-head Army-worm, IX, 50
When are the Eggs laid?, VIII, 40
Where are the Eggs laid?, VIII, 38
Army Worms, The three, I1, 37
Ashes and air-slacked lime for potato-bngs, IV 14
Ash-gray Blister-beetle, I, 97, 115
Leaf-bug, II, 32, VII, 47
Pinion, III, 134
Asilus-dy, II, 123, III, 161
Asilus missouriensis, I1, 121, 122, IV, 21, V, 13, Supp., 87
sericeus, II, 123
Asopia costalis, VI, 102, 106
olinatis, VI, 103, 107
asparagi, Crioceris, II, 10, 13, 19, V I1, 5
Asparagus Beetle, I1, 10, 13, VII, б
Aspidoglossa subangulata, I, 58
Aspidiotus, I, 14
eonchiformis, I, 7, II, 9, 10, V, 91, 94, Supp., 86
harrisii, I, 7, II, 9, Supp., 60
pinifolie, III, 92
astcrias, Papilio, III, 169
Astoma, VI, 52
gryllaria, V II, 175, Supp., 63
parasiticum, VII, 176
Astyci, VIII, 176
Atchison (Kans.) Champion, article from, on
Rocky Monntain Locust, VIII, 108
atalanta, Pyramcis, III, 167
atlanis, Caloptenus, VII, 169, VIII, 113, 114, 115,
116, 117, 118, 153, Supp., 89
Atlantic Locnst, VIII, 150
Atomizer for applying Paris green water, VI, 20
VIII, 5
atruta, Lytta, I, 98, Supi., 54
atratus, Tabanus, II, 128, 129, 130
atricapillus, Parus, IV, 107, VI, 27
atriventris, Lebia, V III, 3, Supp., 52
atrox, Oedipoda, V II, 124

Attacus cecropia, III, 129, 170, IV, 103, 138
cynthia, III, 170, IV, 112, 121, 13א
luna, IV, 123, 138
mylitta, IV, 138
permyi, IV, 137, 138
polyphennes, III, 170, IV, 110, 125, 138.
promethea, I $\Gamma, 110,121,138$
selcuc, IV, 125
yaina-mai, IV, 130, 138
Augher, Prof. Saml., on Rocky Monntain Locust,
VIII, 114
aurichalcea, Cassida, II, 62, Supp., 53
Coptocycla, Supp., 53
auricincta, Tachina, V, 140
aurocapillus, Seiurus, VI, 27
Aurocorisa, a group of Heteroptera, $\mathrm{V}, 12$
autumnalis, Prodenia, III, 13, 189, 116, IV, 129,
VIII, 48
avence, Aphis, II, 5, 6, 10
Avery, Wm. H., on Army Worm, VIII, 39 Chinch Bug, VII, 44 Rocky Mountain Locust, IX, 69
Ayres, E. J., on Tarnished Plant-brg, II, 114

E.

bacchus, Fhynchites, III, 11
Backbone animals, V, 6
Bacou-beetle, VI, 100
Bag-worm, I, 147, III, 160, IX, 17
parasite, I, 150
Bailey, S. S., on Army Worm, VIII, 39
Balaninus, III, 10
cerasorum, III, 11
писит, III, 11
rectus, IV, 144
Baltimorc American, article from, on Wheat head Army-worm, IX, 51
baltimore, Icterus, VI, 27
Baltimore Oriole destroying Canker Worm, VI, 27 Katydids, VI, 162
Pea-weevil, III, 50
Banchus fugitivus, IV, 41
Bandage for $A_{1 p}$ le Worm, IV, 23 Canker Worm, VI, 26, 27
Banded Borer, III, 7
barbara, Colespis, III, $\varepsilon 2$
Barber, A. W., on White Pine-worm, IX, 30
Barbicornis, VIII, 170
basalis, VIII, 170
Baridius sesostris, III, 60, suipp., 71 trinotatus, I, 93, III. 60, Sapp., 54
Baris chlorizans, III, 11
Bark-beetles, III, 6
-borer of hickory, V, 103
-lice, II, 15, 25, III, 6, 10, V, 16, VI, 33
classification of, $V, 92$
of the Apple-tree, $\mathrm{I}, 7$
-lo'ase, III, 85, V, 18
on Apple, I, 7, V, 73
remedies for, I, 16
Currant, I, 15
Pear, I, 15
Persian lilac, I, 15
Pine, V, 97
Plum, I, 15

Barker's Canker. Torm trap, VIII, 21
Barnet, W. N., on Phylloxera, VI, 82
Barret, W. II., on Rocky Mountain Locust, VIII. 65 Barron, W. H., on Rocky Mountain Locust, IX, 70
Barter, A., on Grape root Borer, I, 125
Bartlett, Dr. L., on Arms Worm, II, 49
basalis, Micropus, VII, 22
basillare, Sinoxylon, IV, 52, 53, 54
Basket-worm, I, 147
Bassett, S. C., on Rocky Mountain Locust, IX, 117
bassiana, Eotrytis, IV, 88
bastardi, Erax, II. 124
Promachus, II, 122, IV, 21, Supp., 60
Bates, H. W., on Dauais Buttertlies, III, 161
Bat-ticks, V, 13
Baster, C., on Phylloxera, V I, 83
Bazille, L., on Phylloxera in France, VII, 104
Beach, H. P., on Locusts, VIII, 152
Beal, M., on Chinch Bug, II, 17
Bean-weevil, III, 45, 52, 54, 55
Beautiful Wood N5mph, II, 83, 84, III, 64, VI, 88, 91, 95
Bed Bug, II, 15, 31, V, 12
Beech-twig Plant-lonse, I, 121
Bee-Hy larra, Supp., 60
Bee, Honer, IV, 84
Bee-killer, I, 168, II, 131, IV, 21
moth, I, 166, II, 10, III, 68
parasite, V. 15
Bees, $\mathrm{V}, 9$
Beetles, preparing of, for cabinet, $V, 34$
Bell \& Gruelle ou Rucky Mountain Locust, IX, 92
Bcloxtoma grandis, IX, 128
probable eggs of, IX, 128
Belt, J., on Rocky Mountain Locust, IX, 73
Belvoisia bicincta. V, 140
bifasciata, V, 140
Bembex fasciata, V, 9
Beneficial insects, I, 169, III, 137, I V, 72, VI, 123
Bennet, W. H., on Mimicry, III, 172
Benson's machine for catching Potato-beetle, I, 117
Berckmans, P. J., on Phylloxera, VII, 103, VIII, 164, 165
berenice. Danais, III, 143
Bessey, Pruf. C. E., on Colorado Potato-beetle, V, 54 Common Flesh-fly, VII, 180 Locust Mite, VII, 175
Strawberry Worm, IX, 27
bethunci, Fylina, III, 136, Supp., 75
betuleti, Rhynchites, III, 11
bicarinata, Polysphincta, III, 71
bicaudatus, Amphicerus, IV, 51, V, 54
Bostrichus, III, 6, IV, 51, 53
Bichromate of potash for Potato bugs, IV, 14
bicincta, Belvoisia, V, 140
Senometopia, V, 140
bicolor, Botys, III, 61
bifasciata, Belcoisia, V, 140 Musca. V, 140
bilineatus, Ophion, III, 69
Tclephorus, I下, 29, 30
bipunctata, Tabea, SuIp., 61
bipunctatus, Ecanthus, Supp., 61
Birds that destros the Canker Worm, VI, 27, 28
Birds $v s$. insects, III, 169, VI, 29

Bismarck Tribune，article from，on Rocky Mount． ain Locust，IX， 59
bistriga，Cryptoblabes，IV，46，Supp．， 81
Bi－sulphide of carbon for Phylosera，VI， 56
bivittata，Cassida，II，61，Supp．， 53 Saperda，I，42，II，19，III，6，V II，27，Supp．， 53
bivittatus，Caloptcnus，VII，124， 1 13
Biroltin Silkworms，IV， 85
bivulnerus，Chilocorus，I，16，V， 100
Black－bear caterpillar，The Large，IV， 141 －bellied Lebia，「III， 3
Blackberry fruit－worm，I， 139
Blackbird destroying Katydids，VI， 162
，Rcd－winged，destroying Chinch Bug，「II， 41
Black Blister－beetle，I， 98
Brceze－fly，II，128，129， 132
larva of White－lined Morning Sphinx，III， 142，VIII， 122
－legged Tortoise－beetle，II， 63
－rat Blister－beetle，I， 98
Stinger of the Oak，V， 126
Blanchard，Stephen，on Rocky Mountain Locust，「II． 139
Blatta orientalis，II， 10
Blepharida rhois，I，100，II，58，ГI，115， 121
Bliss，N．W．，on Hickory Bark－borer，V，103
Blissus，Supp．， 58
Blister－beetle，The Ash－gray，I，97， 115
Black，I， 98
Black－rat，I， 98
Brazen，III， 6
Margined，I， 98
Striped，I，96， 115
－heetles，I，115，Supp．， 54
remedies for，I， 99
Blow－Hy，II，19，VII， 27
Blue－bird destroying Canker Worm，ГI，27， 28
Codling Moth，IV， 28
Blue Caterpillars of the Vine，I，136，II，79，III，63， 65，VI， 87
Jay hiding corn in cocoons，IV， 107
－spangled Peach－worm，III， 132
Stone for Potato－beetles，IV， 14
Boardman，S．P．，on Sheep Bot－fly，I， 164
Bob－o－link destroying Canker Worm，VI， 27
Bogus Chinch Bug，II，31，V，112，VII， 45
Colorado Potato－beetle，I， 105
Boissière，E．V．，on Silkworm raising，IV，82
Boissiere＇s silk establishment，I $\Gamma, 82$
Boll－worm，III，45，104，105，VI， 20
remedies for，III， 108
Bolteri，Eurytoma，I，177，Supl．， 68
Bombycide，IV，85，V， 127
－Bombyx，IV，114
graminis，II， 44
mori，IV，75，84， 183
Book－lice， $\mathrm{V}, 15$
Bordered Soldier－bug，I，114．II， 34
boreatis，Epilachna，IV， 18
Borer．The A pple－twig，I $V, 51, ~ V$ ， 54
Flat－headed A pple－tree，I，46，ГII， 71
Grape－root，III， 75
Hiekory Bark，V， 103
Legged Maple，VI， 107

Borer．The Ňew Grape－root，I，124，II， 87 Peach，I， 47
Potate Stalk，I， 92
Raspberra Root，「I． 111
Round－headed Apple．tree，I， 42
Squash，II． 64
Straw berry Crown，III， 42
Eucca，VIII，169，IX， 129
Boston Darly Advertiser，note from，on Army Worm，VIII， 29
Boston Journal，article from，on Canker Worm， II， 96
Rocky Mountain
Locust，III， 15
Bustrichider，IV， 53
Bostrichus，IV， 53
bicaudatus，III，6，IV，51， 53
botrana，Eudemis，Supp．， 57
Lobesia，Supp．， 57
Tortrix，Supp．， 57
Botrytis bassiana，IV， 88 viticola，VI， 36
Bottom，R．，on Rocky Mountain Locust，VIII， 62
Botys bicolor，III， 61
bovinus，Tabanus，II， 129
Bowen，H．，on destroying Potato－beetle，TI， 14
Bowles，G．J．，on imported Cabbage Batterfy， II_{1} 107
Box－turtle，IX， 98
Boxes for insects，$\Gamma, 37$
Brachinus，Supp． 59
kansanus，IV， 21
Brachista，VI， 142
Brachocera，a division of Diptera，V， 13
Brachypeplus magnus，VIII， 148
Brachypterus micropterus，IX， 17
Brachyscelides，V， 92
Bracket，G．C．，on remedies for Canker Worm，II， 100 Strawberry Crown－borer，III， 42 Tent－caterpillar of the Forest， III， 127
Bracon charus，VII，75，Supp．， 67 scolytivorus，$\Gamma, 106$, Supp．， 67
Braconides，III，27，「， 106
polymorphi，I， 96
brassice，Anthomyia，I，156，IV，22， 35
Aphis，II，10，IV， 36
Pieris，III， 167
Plusia，II，110， 111
Braula creca．V， 74
Brazen Blister－beetle，III， 6
Breast－bone in Cecidomyid larve，$\Gamma, 114$.
Breck．Jose 1^{h} ，on remedies for Canker Worm，II， 100
bredouti，Limenilis，III， 171
Breeding Insects，V， 41
Breeze－Hy，「，13，VI， 123
Brenthian，Northern，VI， 113
Brenthus，III， 10
maxillosus，V I， 116
septentrionis，VI， 116
brecis，Phygadcuon，IV， 28
brevipennis，Eudryas，VI， 91
Brewer，F．A．，on Phylloxera，V， 73
Brimstone for Bark－lice，I， 17
Briggs，A．A．，on Flat－headed Borer，VII， 79

Brinkerhoff, M., on Loensts, VI1I, 154
British America, Rocky MIountain Locust in, IX, 59
Broadhead, G. C., on Pickle Worm, II, 69 Rocky Mountain Locust. IX, 74
Broad-necked Prionus II, 9, 87, 88, 89, V, 56 -winged Katydid, V, 123, V L, 167
Brochymcra annelata, IV, 20
Brous, H. A., on Rocky Mountain Locust, IX, 66, 98, 99
Brown Colaspis, III, 82
Brown, A. MI., on Apple Curculio, IIL, 34
Brown, E. R., on Army Worm, VIII, 39
Brown, L. A., on Army Worm, VIII, 39
Brown, Major, on Colotado Putato-beetle, VII, 6
Bruchi, III, 51
Bruchideg, III, 45
Bruchus alboscutellatus, Supp., 71
discoideus, II1. 45
crythrocerus, I1I, 55, 56, Supp., 70
fabce, ILI, 52, 55, Supp., 69, 70
Aavimanus, III, 56, Supp., 70
granarius, II, 11, 14, III, 50, 51
hibisci, Supp., 70, 71
obsolctu8, III, 54, 56, Supp., 70, 71
pisi, II, 11, III, 44, IX, 43, Supp., 53
pisorum, Supp., 53, 71
rufimanus, TI1, 56, Supp., 70
scrratus, III, 56, Supp., 70
transversus, Supp., 70
varicornis, III, 55,56 , Supp., 69, 70, 71
Bruihl, Henvy, on Army Worm, V III, 39
Bruner, Uriah, on Locusts, VII, 139
brunnea, Colaspis, III, 82
Bryant, Arthur, on Hickory Bark-borer, $\Gamma, 104$
Bryning, J. J., on Rocky Mountain Locust, IX, 69 bubalus, Ceresa, V, 12, 121
Bucculatrix pomifoliella, IV, 49,51
thuiella, IV, 51
Buck-bug, V, 145
Moth, V, 127
Egg of, V, 128
Issuing of, $\boldsymbol{V}, 132$
Larva of, V, 129
Natural enemies of, $\nabla, 132$
Pupa of, V, 131
Sting of larva of, $\Gamma, 131$
Buffalo guat, V, 13
Tree-hopper, $\mathrm{V}, 121$
Bugs, how to pin, V, 34
Buprestidce, VII, 72
Buprestis gigantea, IV, 141
Burns, A. M., on Locusts, VII, 138
Burrows, J. H., on Rocky Mountain Locust, IX, 11
Burt, Huron, on Colling Moth, IIl, 103
Gooseberry Spauwotm, IX, 5 Plam Gouger, III, 40 Tortoise-beetle, Il, 57
Bush \& Son, list of grape-rine cuttings, showing relative ease of propagating, $I S, 65$
Butcher-bird destroying Canker Worm, VI, 27
Buttertlies, classification of, $\nabla, 12$
preparing of, for cabinet, $V, 35,36$
pupation of, II1, 146, IT , 55, VI, 138, V1II, 179, Supp., 55
Two of our common, 14I, 142

Butterflies, swarming of, 1I1, 151
Byfield, Jno., on Rorky Mountain Locust, VII, 152

C.

Cabbage-bug, the Harlequin. $1 \Gamma, 35$
Cabbage Butterflies, II, 111, V, 26
Buttertly, the Potherl, 1I, 105
Rape, II, 107
Southern, II, 104
caterpillar, the Zebra, II, 112
-11y, IV, 35
-maggot, $\Gamma, 13$
Plant-louse, II, 10
Plusia, II, 110, 112
Tinea, II, 10, IV, 36
Worms, II, 104, 123 Remedies for, I1, 109
Cabinet and boxes for insects, $\Gamma, 37$
Cabinet of insects prepared tor Missouri State University, VII (preface.p. 5).
Caddice-tlies, V, 16
cagurus, Pollyxerus, VII, 106
calidum, Calosoma, I, 89, 115. II, 103, VIII, 52
California, Phylloxera rarages in, VIII, 163
Silk-growing in, IF, 79
californica, Ecanthes, Supp., 61
caliginosus, Harpalus, I, 115, VIIL, 52
Callidium amoenum, IS, 5t
Callimorpha clymene, III, 134
fulvicosta, III, 132, 134, VI, 92, Supp., 56
lecontei, III. 134, VI, 92, Supp., 55 vestalis, III, 133
Callidryas, III, 151
Callochlora viridis, ILI, 150
Callosamia angulifera, IV, 122, 128
promethea, IV, 121, supp., 55
calmariensis, Galeruca, II, 10, 95, VII, 5, 86
Calocampa exoleta, VIII, 23
calopteni, Anthomyia, IX, 92, 95, Supp., 89
Caloptenus atlanis, VII, 169, VIII, 113, 114, 116, 117, 118, 153, IX, 86, Supp., 89
bivittatus, VIL, 124, 173
differentialis, VII, 124, 171, 173, 180, VIII, 150, 153
femur-rubrum, VII, 126, 128. 170, VIII, 114, 115, 116, 117, 118, 153, IX, 86 , Supp., 89, 90
italicus, VII, 133, VIII, 140
occidentalis, V III, 116
spretus, V II, 121, 122, 135, 170, 180, VIII, $57,109,114,115,116,117,118$, IX, 57 , Supp., 89. 90
viridis, VIII, 117
Calosoma, III, 129
calidum, I, 89, 115, II, 46, 103, VIII, 52
externum, VIII, 52
obsoletum, IS, 98
scrutator, 1I, 103, III, 129, VIII, 52
wilcoxi, V I1I, 52
Cambre, Eugene, on prerenting Phylloxera, VII, 113
Camel-cricket, I, 169, III, 68
Camphell, G. W., on Giape Plyyllosera, V II, 100
Campbell, W. A., on Rocky Mountain Locust, IX, 73

Campoplex fugitivus. I. 139

Campyloncura citripennis, III. 137
Canada Warbler lestroying Canker Worm, VI. 27 Canadian Entomologist, article from, on Hellebore for Currant Worm, IX, 14
Canaday, Elihu, on Army Torm, VIII, 40
canadensis, Myiodioctes, VI. 27
candida, Saperla, Supp., 53
Cane Curculio of the Grape, I, 131
caniculi, Cuterebra, I, 164
Canker worms, I, 9, 109, II, 11, 15, 54. 94, 95, 99, 101 103, III, 128, 160, IV, 23, 40, VI, 24, VII, 80 , VIII, 12, Supp., 56
Bandages for, VI, 26, 27
Birds that devour the worms, VI, 27, 28
Destroyed by plowing, II, 100
Distinction between two species of, VI, 27
Enemies of, II, 102
Extract from the original Essay on, by W. D. Peck, VII, 89
Fall canker-worm, VII. 83, VIII, 18
Oviposition of the two different species, VIII, 37
Oligin of, II, 96
Paris green for, VI, 26
Practical considerations, VII, 85
Remedies against, II, 98, VI, 26, VIII.17, 20
Spring canker-worm, VII, 80, VIII, 18
Traps, VI, 26, VIII, 20, 21
Trough remedy fur, VI, 26
Two species defined, VIII, 13
Cantharides, V, 18
capax, Xylina, III, 136, Supp., 75
Capers, Dr., on Cotton Worm. II, 38
Capsue oblineatus, II, 113, V II, 27
vitripennis, III, 139
Carabida, VI, 123
Carabid larvae, I, 59, IX, 97, Supp., 52
Carbolate of lime for Potato bugs, IV, 14
Carbolic acid for Grape-rine Root-lice, IV, 68
cardui, Oynthia, III, 151, IV, 129
I'terophorus, Supp., 83
carduidactylus, Pterophorus, I, 180, III, 67
Caris, VI, 52
carnaria, Sarcophaga, VII, 180, IX, 95, Supp., 60
Carolina Locust, VII, 179, IX, 92
carolina, Mantis, I, 169, III, 68
Cdipotia, VII, 175, 179
Sphinx, I, 96, IV, 129
carolinensis, Mimus, VI. 27, VIII, 124
Carpenter, D., on Rocky Mountain Loenst, VIII, 102, IX, 70
Carpet Moth, II, 10
Carpocapsa, V, 50
pomonella, I, 62, 108, II, 10, III, 6, 101, IV, 27, V, 154 vitisella, I, 193
Carr, Wm., on Army Worm, VIII, 39
Carrion-beetle, American, VI, 100 -feeders, V, 11
Carson, J., on Rocky Mountain Locust, IX, 75
caryœ, Scolytus, V, 103, 107, Supp., 54
caryccaulis, Phylloxera, VII, 91, 97, 99, 117
caryre.fallax, Phylloxcra, VII, 118
carycefolice, Phylloxcra, IV. 66, VI, 45, VII, 117
caryce-globuli, Phylloxera, VII, 117
carye-yummose, Phylloxera, VII, 118
-ren. Phylloxcra, VII, 118
semen, Phylloxera, VII, 117
septa, Phylloxcra, V II, 118
caryocene, Phylloxera, VII, 117
Casc-bearer, Walnut, IV, 42
-hearing Colemptera, VI, 127, 128
easei, Piophilc, II, 10
Caskie, Robt. E., on Arms Worm, VIII, 39
Cass Counts (Mo.) Couricr, article from, on Rocky
Mountain Locust, VIII, 65
Cassida, I, 100, II, 58, 59
aurichalcea, II, 62, Supp.. 53
bivittata, II, 61, Supp., 53
cruciata, II, 63
guttata, II, 60, 63
nigripes. II, 63, Supp., 53
pallida, II, 62, Supp., 53
signifer, II, 63
texana, Supp., 54
trabeata, II, 63
cassinii, Cicada, I, 20, 21, IV, 33, Supp., 59
castanece, Phylloxera, VII, 118
Castnia licus, VIII, 178
linus, VIII, 178
yuccre, VIII, 173
Castnioides, a proposed tribe of butterflies, VIII 179
Castor-bean Silkworm, IV, 112
Cat Bird destroying Rocky Mountain Locust, VIII, 124
destroying Canker Worm, VI, 27
Caterpillars of the Vine-The blue, VI, 87
Catocala, VIII, 178
phalanga, III, 166
Cecidomyia, Supp., 59
destructor, II, 10, 19, V, 25, VII, 27
Cecidomyidee, larval characters of, V, 114
cecropia, A ttacus, III, 129, 170, IV, 74, 103, 138
Hialophora, IV, 103
Platusamia, IV. 103
Samia, IV, 103, Supp., 55
Cecropia Cryptus, IV, 110
Silkworm, I Y, 103
Food-plants, 104
Larral Changes, IV, 106
Parasites of, IV, 107
Tachina-fly, IV, 108
worm, III, 7
cecropice, Exorista, IV, 108, Supp., 60
Cedar-bird lestroying Canker Worm, VI, 27
cedrorum, Ampclis, VI, 27
Celcena, I, 68
cgcns, Supp., 56
herbimacula, I, 86
infccta, Supp., 56
murcimaculata, Supp., 56
oblonga, III, 136, Supp., 75
renigera, I, 86, Supp., 56
subcadens, Supp., 56
celtis, Apatura, VI, 139, 142
Ceutorhynchus napi, III, 11
ceparum, Anthomyia, I, 155, II, 9
cerasi, Sclandric, II, 19, VII, 27
Cerasphorus cinctus, III, 7, VII, 76
Ceratocampince, V, 127

Ceratopagon, Supp., 59
cereana, Galleria, I. 166, II, 10, Supp., 57
Ceresa bubalus, V, 12, 121
Cereters, VIII, 178
Certhindre, IV, 93
cervicalis, Scymnus, I. 122
Chcerocampa, II, 71
pampinatrix, II, 71
Chatcididre, V, 88
Chalcis, II, 92, III, 158
albifrons, II, 52, VILI, 54
marice, IV, 109, 110, 123
Chalcis-Hy, II, 52, IV, 51, V, 89
The inflating, I, 176
chalybea, Haltica, I, 101, III, 79, 81, Supp., 53
Chambers, V. T. on Cicada, I, 20, 28
Change of habit, III, 91
Chapin, Oliver, on Colling Moth, IV, 26
charus, Bracon, VII, 75, Supp., 75
Chatterer of Carolina destroying C'anker Worm, VII, 90
Chauliognathus, IV, 30
americanus, Supp., 53
marginatus, V, 15t
pennsylvanicus, I, 57, IV, 28, V, 15t, Supp., 53
Cheese Fly, II, 19, VII, 27
Maggot, II, 10
Chelymorpha, II, 58, 59 cribraria, II, 58
chenopodii, Hadena, Supp., 76, 77
Cherished Bracon, VII, 75
Ohermes pinicorticis, V, 100
Cherry-bird destroying Canker Worm, VII, 90.
Chestnut-sided Warbler destroping Canker Worm, VI, 27.
Chickalee storing corn in cocoons, IV, 107
destrosing Canker Worm, VI, 27
Chickweed Geometer, I, 179. [See Knotweed]
Chicago Times, article from, on Rocky Mountain Locust, VIII, 73
Chicago Tribune, articles from, on Rocky Mountain Locnst, VII, 155, VIII, 82, 107
Child, A. J., on Rocky Mountain Locnst, V III, 91
Chilocorus bivulnerus, I, 16, F, 100
Chinch Bug, II, $2,6,11,15,16,19,20,32,35,70,114, \nabla$, 12, 19, 62, VII, 19, 190, ГIII, 22, 120, 142, 143
Abstaining from the cultivation of the grains upon which the insect feeds, VII, 38
Amount of damage done by, II, 28
Appearance and transformations of, VII, 20
Appendix to the article on, VII, 51
Bogns Chinck Bug, II, 31, V, 112
Burning as remedy for, VII, 32
Cannibal foes of, II, 25
Destructive powers of, II, 22, VII, 24
Direct remedies aqainst. VII, 31
False Chinch Bug, V, 111
Flight of, VII, 29
Food plants, VII, 26
Heary rains destructive to, II, 24, VII, 30
Importance of winter work and combined action, VII, 36
Injurious to stock, VII, 43
Injurics in Missouri in 1874, VII, 25

Chinch Bug-Continurd.
1njuries in 1874, V II, 24
Invigorating the plant by manure, early sowing, etc., VII, 34
List of correspondents who made returns, V II, 51
Migration on foot, VII, 30
Mixing seed or protecting one plant by another, VII, 34
Mode of reproduction and hibernation, VII, 27
Natural enemies, VII, 38
Natural history, II, 18
Past histors, II, 17, VII, 2?
in Missouri, V II, 22
Possible remedial and preventive measures that need further and thorough trial, V II, 41
Preventing the migration of, from one field to another, VII, 35
Prerentive measures, VII, 32
Prognosticating. VII 24
Questions answered by correspondents, VII, 52
Recapitulation of its natural history, II, 36, VII, 49
Remedies against, II, 23
Rolling as preventive, VII, 33
Unnecessary fears, VII, 44
Where the eggs are laid, VII, 28
Chipping Sparrow destroying Canker Worm, VI 27
Chlamys, III, 159
plicata, VI, 123, 130
chlorizans, Baris, III, 11
Chlorops, I, 160
Chronological history of Periodical Cicada, I, 30
Chrysobothris femorata, I, 46, III, 6, V II, 71, Supp., 67 var. alabamo, VII, 71
fastidiosa, VII, 71
lesueuri, VII, 71
misella, VII, 71
obscura, VII, 71
4-impressa, VII, 71
semisculpta, VII, 71
soror, VII, 71
Chrysomela, II, 57, 59, III, 45, VII, 18 decem-lineata, VII, 16, 18
meticulosa, VI, 122
rhois, VI, 122
stolida, VI, 122
Chrysomelider, III, 14
Chrysopa, I, 57, III, 150, IV, 45
eriosomatis, I, 123
illinoiensis, II, 26, V II, 39, 40
plorabunda, II, 26, VI, 51, VII, 40
tabida, VII, 106
Chrysops vittatus, II. 129
Cicada, VI, 37, VIII, 38
cassinii, I, 20, 21, IV, 33, Supp., 59
pruinosa, $\mathrm{I}, 27$
septemdecim, I, 1\&, 19, 20, II, 19, III, 6, IV, 31, VII, 27, Supp., 58, 59
tredecim, I, 19, II, 19, II, 6, VII, 27, Supp., 58, 59
Cicada, The Periodical, I, 18, IV, 30

Cicadre, II, 131
Cicindela circumpicta, IX, 98 formosa, LX, 98 fulyida, IX, 98 punctulata, TX, 98 pulchra. IX, 98 repanda. VIII, 52 scutcllaris, IX, 98 sexguttata, IX, 98 vulgaris, IX, 98
Cincinnati Gazette, article from, on Rocky Mountain Locust, IS, 84
cinctus, Cerasphorus, III, 7, VII, 76
Harpactor, I, 114, VII, 41, Supp., 58
Tabanus, II, 129
cinderclla, Tortrix, IV, 47, Supp., 82
cinerea, Epicauta, Supp., 54
Lytta, I, 97, Supp., 54
Piesma, II, 32, VII, 47
Tylina, III, 134, 135, Supp., 75
cinercopunctella, Elachista, VI, 138
cinerosa, Xylina, III, 136. Supp., 75
cingulatus, Oncidcres, III, 6
circumcinctus, Pcrillus, IV, 19
Citheronia regalis, III, 151, IV. 129, V, 141
clandestina, Noctua, I, 79, Supp., 55
Clandestine Owlet-moth, I, 79
Clark, Rufus, Machine for destroying Locusta, VIII, 129
Clark, William H.. on Rocky Mountain Locust, IN, 74
Classification of insects, $\mathrm{V}, 8$
Classification, remarks ou, I, 98, 99, II, 71, III, 94, $95,96,133,143$, IV, $46, ~ \nabla, 9, ~ V I I, ~ 143,170$, VIII, $170,178,179$
clavata, Dcloyala, II, 57, Suppr., 54
Claston \& Steveus, Curculio Catcher of, III, 22
Clelland, J. L., on Rocky Monutain Locust, IX, 73
Clemens, Dr. B., description by, of Callimorpha fulvicosta, III, 133
Cleonymus clisiocampce, III, 120
Clerus apiarus, VI, 101
Cleveland Herald, article from, on Grape-vines, V, 59
Climbing cut-worms, I, 76
Clisiocampa americana, II, 7, III, 117, V, 56
disstria, Supp., 55
sylvatica, II, 7, 37, III, 121, IV, 41, Supp., 55
clisiocampce, Clconymus, III, 120 Semiotellus, III, 1:0
Closterat emericana, II, 19, VII, 27
Clothes Moth, II, 10
Clover-hay Worm, VI, 102
Natural History, VI, 105
Remedies, VI, 105
Clover Worms, 「I, 103
in the State of New York, VI, 104
Clubbed Tortoise beetle, II. 56, 57
Clumsy Locust, VIII, 148
clymone, Callimorpha, III, 134
Clythra, VI. 128, 130
elyton, Apatura. VI. 142, 145
Clytus pictus, I1I, 7, VI, 101
Cncthocempe pioccssionea, $\Gamma, 126$
cnotus, Otus. II, 71

Cobalt, for Potato-beetle, IV, 14
Coccido, II, 15, Г, 16, 92, ГI, 33
Coccinella, VI, 51
munda, II, 25, VII, 39, Supp., 5 ?
novemnotata, I, 112
picta, $\Gamma, 101$, supp., 52
Coccincllide, V, 11, 27
Coccotorus, supp., 54
Coccus adonidum, III, 96, V, 80
cacti, V, 18
lacca, V, 18
Coccyzus americanus, III, 121
erythrophthalinus, III, 121, VI, 27
Cochineal, IV, 84, V, 18
Cochylis kilarana, I, 175, II, 135
cochranii, Agrotis, I, 74, Supp., 76, 77
Cochran, J. W., on Dark-sided Cut-worm, I, 75
on Climbing cut-worms, I, 69
Cochran Rustic, I, 74
Cocklebur Sphenophorus, III, 60
Cockroach, II, 10, V, 14
Cocoon, issuing of moth from, IV, 105, 127
Codling Moth, I, 62, II, 6, 10, III, 32, 101, 118, IV, 22,
$27,48, ~ \nabla, 26,47, ~ V I, ~ 9$
Again, IV, 22
Attacks peaches, IV, 22, V, 49
Best kind of bandage for, IV, 23
False doctrines about, V, 51
Fires, lights, bottles of liquid as remedies, I $\bar{\Gamma}, 27$
Found in California, $\Gamma, 49$
Jarring as remedy, IV, 25, V, 48
Natural euemies of, IV, 28, V, 49
New methods of trapping, IV, 23
Remedies for, I, 65, IV, 25, V, 48
Sweetened water as remedy for, IV, 138
Time of fear that the first moths appear, IV, 22
Wier's Trap, IV, 23, V, 47, VI, 10
Caliodes incequalis, I, 128, III, 60, Supp., 54
Colaspis berbara, JII, 82
brunnca, III, 82
flavida, III, 44, 63, 81, 84, IV, 34, V, 108
suilla, III, 82
Colby, Lewis, on Locust rarages, VII, 168
Cole, M., on Phelloxera, VIII, 166
Coleoptera, classification of, $\mathrm{V}, 10$ preparing of, for cabinet, $V, 34$
Collecting insects, $\mathrm{V}, 29$
Colman's Rural Forld, article from, on I'hylloxera, VI, 83, 84
Colorado Farmer, article from, on Rocky Mountain Locust, VIII, 84, 156, IX, 62
Colorado Locust, VII, 188
Colorato Potato-beetle, I, 101, 102, II, 6, 19, 25, 32, 59 , III, 80,98 , IV, $5, ~ V, 26,52,62, ~ V I, 11,17,18$ VII, 1, 29, 39. VIII, 1, 137, IX, 17, 34
Alarm about it abroad, VII, 3
Amouut of damage caused by it in Missouri IV, 7
An addition 20 its natural enemies, $I X, 40$
Area invaded br, IX, 38
Arseuious acid as remedy, IV, 14
Artificial remedies for, I, 116
Best means of fighting it, III, 97
Bichromate of potash as remedy, IV, 1s

Colorado Potato-beetle-Continued.
Bogns experiments, III, 100
Carbolate of lime as remedy, IV,14
Canses which limit the spread of, IX, 38
Dog-feunel as remedy, IV. 15
Damage during the year 1875, VIII, 1
Enemies of, I, 111, 112, 113, 114, 115, IV, 16, V, 52, V III, 3, IX, 40
Further experience with Paris green, VIII, 5
Gray's Improved Sprinkler, V II, 15
Hellebore as remedy, IV. 14
How it affected the price of potatoes, IX, 39
How it traveled, $\mathrm{IX}, 37$
Is it poisonons? VII, 6
It passes the winter in the beetle state, VII, 14
It reaches the Atlantic. V II, 1
It spreads, but does not trarel in the sense of learing one district for another, IT, 9
Its babits, I, 107
Its hibernation, IV. 11
Its injnries in 1871, I V , 5
Its introduction to Europe, IX, 43
Its past history and future progress, I, 101
Its progress eastward, V, 52, VI, 12
Its scientific name, VIII, 2
Machine for sweeping it off rines, VIII, 4
Mandrake or Mar-apple as remedy, IV, 15
Mechanical means of destroying, IV , 15, VI, 14
Moditication it has undergone in habits, IX, 40
Native home of, VIII, 8
Natural checks increasing, III, 100
Natural remedies, I, 109
New food plants of, IV , 10, V, 52, VI, 11, VII, 14
New mears of destruction, VII, 15
New territory invaded, IV, 8
Occurrence in the Atlantic States, V III, 1
Parasite of, I, 111
Paris green as remedy. III, $99, \mathrm{I} \nabla, 11, \Gamma, 52, \mathrm{VI}$, 13, VII, 8, VIII, 3
Peck's Spray Machine, VIII, 4
Placard published by the German Government, IX, 44
Poisonous gnalities of, VIII, 11
Potato Pest Poison as remedy, IX, 45
Powdered Hellebore as remedy, IV, 14
Preparing for it in Europe, VI, 15
Rate at which it trareled, IX, 37
Remedies for, I, 109, 116, III, 99, IV, 11, 13, 14, $15, ~$ V, 52 , VI, 13, VII, 3, 7, 8, VIII, 3, IX, 45
Spread of the insect during the year 1876,IX, 34
Sulphate of copper as remedy, IV, 14
The beetle eats as well as the larra, VII, 14
The Bogus Colorado potato-beetle, I, 105
The proper scientific name of the beetle, VII, 16 The true remedy, III, 101
Use of straw as a prerentive, VIII, 4
Colorado Putato Bug (see Colorado Potato-beetle).
Colorado, Rocky Mountain Locust in, VIII, \&4. IX, 62
columbia, Samia. IV, 107, 111, 128, Suppr., 55
comma, Leucania, VIII, 43
commelince, Prodenic, I, 88, III, 13, SuIPT.. 56
Commission, National Eutomological VIII, 133
Common Currant Plant-louse, IX, 2
Flesh-Hy, VII, 180, IX, 95
May Beetle, III, 8

Common Pruner, III, 6
Quail destroying Chinch Bug, II, 28
Yellow Bear, III, 67
communis, Melanotus, III, 6
compta, Oeta, I, 151, Supp., 58
Pociloptera, I, 152
comptana, Anchylopera, I, 143
Phoxopteris, Supp., 57
concavum, Platyphyllum, V, 124, VI, 167
conchiformis: Aspidiotus, I, 7, II, 9, 10, III, 93, Supp., 86
Conchylis ambiguclla, Supp., 57
Cone-like willow-gall, VI, 155
conformis, Sylina, III, 136, Supp., 75
conica, Phylloxera, VII, 118
conicus, Rhynchites, III, 11
Conocephalus, VI, 155
conotracheli, Porizon, III, 28, Supp., 64
Conotrachelus, V, 154
crateegi, III, 35, 39
juglandis, Supp., 54
nenuphar, I, 50, III, 11, 28, 127, Supp., 54, 65, 68
conquisitor, Pimpla, IV, 43
consociella, Acrotasis, IV, 45
conspersa, Amphipyra, III, 75, Supp., 75
Consumptive Lace-wing, VII, 106
Contopus virens, VI, 27
contracta, Meracantha, VI, 118
contractilis, Hoplophora, VI, 54
convergens, Hippodamia, I, 112
Convergent Lady-bird, I, 112
convolutella, Myelois, Supp., 57
Zophodia, Supp., 57
Copper, sulphate of, for Potato-beetle, IV, 14.
Coptocycla, II, 58, 59, 63, Supp., 53, 54
aurichalcea, Supn., 53
guttata, Supp., 53
Coral-winged Locust, VIII, 104
Coreus linearis, II, 113
tristis, I, 113, II, 31, VII, 46, Supp., 58
Corinelcena lateralis, II, 35
pulicaria, II, 33, VII, 48
unicolor, II, 35
Cornaby, Samuel, on Silkworms, IV, 101
Coin Anthomyia, I, 155
Cut-worm, I, 87
Maggot, I, 154
Rustic, I, 81
Sphenophorus, III, 59
Worm, III, 45, 104, 105, 111
cornutus. C'orydalues, V, 143, IX, 125, Supp., 63
Passalus, IV, 139, 140
Corpodacus purpureus, VI, 27
Corydalus cornutus, V, 143, IX, 125, Supp., 63
Corynetes rufipes, ${ }^{\text {V }}, 96,101$
violaceus, VI, 101
Coscinoptera dominicana, VI, 127
Cossus, VIII. 177
costalis, A sopia, VI, 102
Tabanus, II, 128
C'otalpa lanigera, V, 10
Cotton Aime-worm, II, 41, V III, 23
Buld-worm, III, 111
moth, II, 40
Position of when alighting, V I, 24

Cotton Worm, II, 38, III, 105, T, 19, 68, VI, 17, VII, 9 Hibernation of, VI, 22
Natural entmies of, VI, 23
Paris green as remeds, VI, 20
Range of, VI, 23
worms, II, 37
Cottonwood Dagger, II, 119
Gall plant-louse, I, 120
Country Gentleman, article fiom, on Apple Worm remedy, $\mathrm{T}, 48$
article from, on Clover Worm, VI, 104
article from, on Curculio, IV, 26
article from, ou Grape-vine Colaspis, III, 82
article from, on Locusts, VII, 172, VIII, 15?
article from, on Phylloxera, $\Gamma, 59, \mathrm{VI}, 82$
article from, ou Potato-beetle, I, 111
article from, ou Tent-caterpillar, III, 125
County reports (Mo.) on Rocky Mountain Locust, IX, 68
Crabro stirpicola, IX, 95, Supp., 89
crabro, Vespa, IV, 22
Cranberry-weevil, III, 60
Crandall, O. A., on Rocky Monntain Locust, IX, it
Crane-flies, I, 180, II, 132
crantor, Pholus, II, 74
Sphinx, II, 74
Craponius, Supp., $5 t$
cratagi, Conotrachelus, III, 35, 39
Cratoparis lunatus, III, 10
Cream Callimorpha, III, 133
Creepers destroying Codling Moth, IV, 28
Black and White, destroyiug Cauker Worms, VI, 27
Creighton, Samuel, Insect-destroyer invented br, IV, 15
cressonii, Hemiteles, I, 177, Supp., 65
Craig, Wm. G. M., on Rocky Mountain Locust, IX, 73
cribraria,.Chelymorpha, II, 58
Crickets (Gryllidae), V. 14, VI, 154
erinitus, Myiarchus, VIII, 124
Crioceris asparagi, II, 10, 13, 13, VII, 5
merdigera, II, 58
Croton Bug, II, 10
Crow destroying Katydid, VI, 162
Potato-beetles, VIII, 3
Crow, J. H., on Rocky Mountain Locust, IX, 72
Crow Blackbird destroying Canker Worms, VI, 27 Codling Moths, IV, 28 Locusts, VIII, 124 Pea-weevils, III, 50
Crown-borer of the Strawberry, III, 44, 83
cruciata, Cassida, II, 63
crucifcrarum, Plutclla, II, 10, IV, 36
Crnstacea, a class of Segmented animals, $\nabla, 6,7$
Cryptoblabes bistriga, IV, 46, Supp., 87
Cryptocephalus, VI, 128, 130
Cryptus extrematis, IV, 110, 111, 123, Supp., 52
grallator, VII, 75
inquisitor, I, 150

Croptus muncius, IT, 110, 111, 123, Supp., 52
samie, IT ${ }^{\top}$, 110, 111, Supp., 5 ?
smithii. IT, 111
Ctenucho americana, II, 8.5
Cuckoo, Yellow-billed, destroyiug Canker Worm, VI. 27

Locusts, VIII, 124
Cucumber-beetle, I, 100, II, 62, 65
Hea-beetle, I, 101, II, 57, 「, 112
cucumeris, Haltica, I, 101, II, 53, Supp., 53
cemea, Hyphantria, Supp., 55
Curculio, II, 11, 16, 92, III, 13, 16, 25, 29, $\mathrm{V}, 22$
Apple, III, 29
Natural history of, III, 30
Remerlies fur, III, 34
Catcher, Hooteu's, III, 23
Hull's, III, 19, V, 25
Warl's, III, 20
Grape, I, 128, III, 60
Grape-cane Gall, I, 131
Grape-seed, I, 129
Plum, I, 50, III, 11
Enemies of, I, 57
Parasites of, III, 24
Points in its natural history, I, 50, III, 11
Remedies for, I, 60, III, 15
Quince, III, 35
Curculionide, characteristics of III, 9 creaking noise proluced by, IIL, 14
curculionis, Sigalphus, III, 25, 27, Supp., 67
cucurbitce, Egeria, II, 64
Currant Aphis, VI, 46
Fruit.worm, I, 140
Plant-louse, II, 10
-stem Borer, VI, 108
Curraut Worm, II, $8,9,96$, IV, 14 , IX, 1
the imported, IX, 7
the native, IX, 23
Hy, IX, 19
Cursoria, a section of Orthoptera, $V, 14$
cursoria, Agrotis, I, 78
curvicauda, Phaneroptera, VI, 164
Curvirostra leucoptera, VI, 27
Cuterebra, III, 150
caniculi, I, 164
Cut-worm lion, I, 90
The climbiug, I, 69, 76
The Dark-sided, I, 74
The Ding $5, \mathbf{I}, 82$
The Glassy, I, 83
The Greass, I, 80
The small White Bristly, I, 86
The Speckled, I, 84
The Variegated, I, 72
The Western Striped, I, 81
The Wheat, I, 87
The W-marked, I, 79
Cut-worms, I, 67, II, 16, 45, III, 6
Natnral history of twelre distiuct species, L, 67
Remedies against, I, 89, 90
cyanea, Cyanopiza, KI, 27
Cyanopiza cyanea, VI, 27
Cycloneda sanguinea, Supp., 52
Cylindrical Orthosoma, I, 126, II, 91
cylindricum, Orthosoma, I, 1:24, II, 87

Cyllenc pictus, VI. 101
Oyllocm is scutcllatus, V, 154
Cynipide, VI. Tu
Cynips, II, 135
gallre-tinctorine, V. 18
quercus-aciculivta, supp), 59
quercus-inanis. I, It
quercus-spongifica. 1. It
cynosbana, (Spilomota), Supl). 57
cynthia, Attacus, III, 170. 1V. 7f, 112, 138 Samia, IV, 112
Cunthia cardui, III, 151. IV 129
Cy:tophyllus, V, 123

I.

Dactylopius longispinus, IV, 70, VI, 63 Dactylosphera, III, 93, 9 t
caryce-magnum, VII. 117
caryop-semen, VII, 117
caryreseptuin, V II, 117
conicum, VII, 118
coniferum, VII, 118
depressum, VII, 118
forcaium, VII, 118
globosum. V1I, 117
hemisphericum, VII, 117
spinosum, VII, 118
subcllipticum, VII, 117
vitifolice, I. 13
Dactylosphreride, III. 85, VI. 31
Dade County Advocate, article from, on Rocky Mountain Locust. VIII, 68
Daggy, E., on False Arms-worm, III, 112
on Apple Curculio. III, 33
Dakota, Rocky Monntain Locust in, VIII, 85, IX, 59

Dakruma turbatella, Supp., 57
Daruis, II, 125, III, 161, 168, 169, V, 146 archippus, III, 143, 167, IV, 129, V, 149, Supp., 5.5
berenice, III, 143
erippus. III. 143
Daphne pandorus, II, 76
Darapsa myron, II, 71
Dark-sided Cut-worm, I. it
tipperl Anomalon, IX, 5.5
Dart-bearing Rnstic, I, 82
Darwin, Charles, on Evolution, III, 172, 173
Darwinism, argament in favor of, III, 173
Datanu ministra. III, 124, 127. 129. IV, 129
Davis, C. K., on Rocky Mountain Locust, VII, 154
Dawson, fr. M., on Rocky Mountain Locust, VII, 155, IX, 78
Dean, J. J., on Colorado Potato-beetle, VIII, 2
decemlineata, Chrysomela, VII, 18
Doryphora, I, 101, 103, I V, 8, VI, 12, 18, VII, 1, 16, 18
Deer Fly, F, 127
Defakaugh, David, report on Rocky Monntain Locust, IX, 70
Definition of Entomology, V, 5
Defunctionation of special parts in the imported Currant Worm, IX, 19
Deilephila lineata, III, 140
Dciopeia bella, V, II
Delicate Long-sting, $V, 50$

Drtoyala II 59
clatata, II, 57, silpp., 5t
Dendroica astiva, VI, 27
discolor, TI, 27
maculosa, VI, थі
pennsylvanica, VI, 27
striata. VI. 27
Department of Aqriculture, ineticiency of, VII (preface p. 5).
deprosðx. Phylloxera, VIT, 118
Dermaleirhus, V, ह7
Dermestes, $15.97, \Gamma, 41$
lardarius, VI. 100
Drsmia maculalis, III, 61
Descriptive entomologr, comments on, III, 123
Destination of departing Locusts, VIII, 107
Destitution in Missouritrom Locust injuries, VIII, 91
Destructive powers of the Chinch Bug, II, 22
destructor, Cecidomyja, II, 10, 19, V II, 27
Nysius, VII, 190, Supp., 85, 85
Derastating Dart, I, 83
devastator. 1 grotis, I, s3, Supp., 36
Deril's Riding-horse, I, 169
Dicobrotica vittata, 1, 100, II, 62, 64, III, 6
12.punctata, II, 66
diademx, Sinea, Supp. 58
diana, Argynnis, III, 69, 171
Diaspides, a subfamily of Coccidre, V, 92
Diaspis, V, 91, Supp., 60
oxtreceformis, Supp., 60
diastrophi, Eurytoma, Supp., 68
Dictyoptera, a division of Neuroptera, V, 14
Differential Locust, VII, 124, 173, VIII, 150, 153 eggs of, VIII, 154
differentialis, Caloptenus, VII, 124, 173
Digger Wasp, II, 106, III, 8, VII, 174
dilatatus, Felleius, IV, 22
Dimera, a division of Homoptera, $V, 13$
dimidiatus, Micropus, VII, 2!
Diminished Pezomachus, II, 52, V III, 54
Dimorphism in butterfles, III, 165
locusts, V1II, 115
I'rionus, II, 90
Dinarda, IV, 2:
Dingy Cut-worm, I, 82
Diplosis tritici, II, 10
Diptera, classitication of, $\mathrm{V}, 13$
discoideus, Brucleus, III, 45
discolor. Dendroica, VI, 27
Diseases of Mulberry Silkworm, I V, 87
Disippus Butterfy, I 1, 125, III, 153, 168, 169
Description of mature larva, 1II, 154
Description of the egg, III, 154
Parasites of, III, 157
Winter quarters of, III, 155
Microgaster, III, 158
disippus, Limenitis, III, 153, 168, 169, 171, Supp., 66 Nymphalis, II, 125
dispar, Hypogymena, II, 10
disstria, Clisiocampa, Supp., 55
distinctus, Passalus, IV, $1+1$
Dixon, F. M., on Army Worm, VIII, 39
Dotge, C. P., on Rocky Mountain Loc 18*, VII, 164,
VIII, 173
Dolichonyx oryzivorus, VI, 27, VIII, 52
domestica, Musca, II, 10
Domestication of insects, I $V, 85$
dominicana, Coscinoptera, VI, 127
Dominican Case-bearer, V I, 127
Dopf, J. D., on Canker Worms, II, 98 on Rocky Mouutain Locust, IX, 68
Dorr, R. L., on Grape-vine Tomato-gall, V, 118
dorsatum, Phalangium, IV, 17
Doryphora concatencta, VIII, 2 10-lineata, I, 101, 103, IV, 8, VI, 12, 18, VII, 1, 16. 18, VIII, 1, IX. 34, 43
juncta, I, 103, 105, VII, 18. IX, 39, 43 melanothorax, VIII, 10 undecimlineate, V III, 10
doryphorce, Lydella, I, 111, I V, 6, Supp., 88
Dotted-legged Plant-bug, IV, 19
Douglass, J. B., on Army Worm, VIII, 39
Downs Woodpecker destroying Canker Worms, IV, 28, VI, 28
Doxocopa, VI, 142
Dragon Flies as enemies of Cicarla. I. 26
Drasteria, VIII, 178
Drop Worm, I, 147
Dryocampa rubicunda. III, 123. V, 137
Larval changes of, $\mathrm{V}, 138$
Natural enemies of, V, 139
Remedies for, $\Gamma, 140$
senatoria, III, 123, IV, 41 stigma, III, 123, IV, 41, V, 141
Dujardinii, Hypopus, VI, 53
Dung-beetles, creaking noise made by, III, 14 -carriers, II, 58, VI, 128
Dunkler, B. F., on Rocky Mountain Locust, VIII, 149
Dunlap. M. L., on Rocky Mountain Locust, VII, 155
Dunu, William, on Rocky Mountain Locust, VII, 152, IX 118
duodecimpunctata, Diabrotica, II, 66
Durand, J. B., on Rocky Mountain Locust, VIII, 63
Duties of State Entomologist, V, 27
Dwarf Trogosita, III, 6
Dye, A. Ac, on Rocky Mountain Locust, IX, 69, 117 Dr. A. H., on Army Worm, VIII, 39
Dyer, D. P., on Army Worm, VIII. 39

E.

Ear-fly, II, 129
Early, Sam. H. Y., ou White Grub fungus, I, 158
Earwigs, characteristics of, V, 16
East Iudia ants, III, 8
echinopus, Tyroglyphus, VII, 106
Econemic entomology, importance of, $\nabla, 18$, VII (preface, p. 4).
Ecpanthcria scribonia, IV, 141, 143
Ectobia germanica. II, 10
Eddleston \& Williams. manufacturers of fine eutomological pins, $\Gamma, 35$
Edwards. C. R., on Broad-necked Prionus, II, 88 egens, Celouna, Surpr, 56
Egg burster of Corydalus, IX, 127
Egg-guile, IX, 87
Egg of Abbott's Pine Worm, LX, 31
Apple Curculio, III, 31
Archippus Butterts, III, 144

Egg of Beautiful Wood Nsmph, VI, 89
Broad-necked Prionus, V, 56
Broad-winged Katydid, V, 123
Chiuch-Bug. II, 21, VII, 21
Common May Beetle, V, 5
Cotton Wornu, II, 38
Disippus Butterfly, III, 153
Dominican Case-bearer, VI, 128
Flat-headed Apple-tree Borer, VII, 73
Guoseberrs Span-worm, IX, 4
Horned Passalus, V, 55
Imported Currant-worm, IX, 10
Mulberry Silkworm, movements of, IV 86
Native Currant Worm, IX, 25
Nancow-winged Katydid, ∇, 124
Oblong-winged Katsdid, V, 123
Oeta compta, Supp., 58
Pea-weevil, III, 47
Strawberry Worm, IX, 28
Yucca Borer, VIII, 174
Eggs in Canes and Twigs, V, 119
of the American Tent-caterpiller, III, 118, V 56
Army Worm Moth, VIII, 34, 183, 184
When laid, VIII, 40, 182, 183
Where laid, II, 48, VIII, 34, 182
Belostoma grandis, IX, 128
Buffalo Tree-hopper, V, 121
Canker Worms, II, 94, VH, 82, 84, 86 . VIII, 13
Chinch-Bug, VII 21
Differential Locust, VIII, 154
Frosted Lightniug-hopper, V, 122
Grape Phylloxera, IV, 59, VI, $34,38,41$. 92, 98, VIII, 158
Harlequiu Cabbage Bug, IV, 37
Hackberry Butterflies, VI, 139, 141, 148.
Jumping Sumach Beetle, VI, 120, 121
Jumping Tree-hopper, V, 119
Mantis carolina, I, 170
Ecanthus latipennis, V, 119, Supp., 60
Orchelimum, V, 123
Orocharis saltator, Supp., 62
Periodical Cicada, I, 25
Rocky Mountain Locust, VII, 122
Effects of burying at different depths, IX, 104
Effects of exposure to air, IX, 104
Effects of freezing and thawing on, IX, 99
Effects of moisture on, IX, 101
Experiments with, IX, 99
How laid, IX, 86
Snowy Tree-cricket, V, 120
Tent-caterpillar of the Forest, II, 122 .
Tortoise Beetles, II, 60, Supp., 53
Unkuown Tree-hopper, V, 122
Wheat-head Army Worm, IX, 55
Egg-Mass of Hellgrammite, IX, 120 Rocky Munntain Locust, Philosophy of. IX. 57
Egg-Parasite, the Authomsia, IX, 92
egle, Euchures, I. 139, III, 133, IV, 41
Eight-spotted Forester, I, 136, II, 83, 86, VI, 94
Elachista cinereopunctella, VI, 138

Elaphidion parallelum, III, 6. IV. if villosum, III, 6
Elaphrus rusearius, VIII, 52
Eliott, F. K., ou dyiug of Grape-rines, V, 59
Ehw Leaf beetle, II, 10, V II, J Scolytus, V, 107
Elm-tree Louse, I, 123
Elongate Ground-beetle, I, 115
elongatus, Pasimachus, I, 115, VIII, 52
Elytra of Coleoptera, characteristics of, V, 10
Emery, H. D., ou Climbing Cut-worm, I. 77
Rocky Mountain Locust, VII, 138
Emmenadia pectinata, VI, 125
Emphytus maculatus, IX, 27
Empidonax minimus, V I, 27
Empretia stimulea, V, 126
Endropia armataria, 1Г, 7
Engelmann, Dr. G., on the Grape-vines of the U. S., IV, 60, VI, 70 on Locusts, IX, 84
Engelmann, Theod., on Grape-vine grafting, VI, 80 on Raspberry Root-borer, VI, 112
Entomological collecting instruments, $\mathrm{V}, 29$
Commission, argument in faror of creating, VII (preface, p. Ј). VIII, 134.137 pins, $\mathrm{V}, 34$
Entomologist, duties or a State, V, 27
Entomology, definition of, V, 5
Economic importance of, V, 18
Importance of, as a study, V, 17
Its advancement, $\Gamma, 5$
Its relations to agriculture, V, 5
Progress of ecouomic, V, 19
Entomophaga, a subsection of Hymenoptera, $\mathrm{V}, 10$
Entomophilons plants, V, 152
entomophagus, Tyroglyphus, VI, 52
Entomotaxy, V, 34
Epargyrius tityrus, VIII, 173
ephemeraformis, Thyridopteryx, I, 147
Ephestia zece, IX, 31
Ephialtes, I, 178
notanda, IX, 98
Epiecerus fallax, III, 58 formidolosu\&, III, 58
iinbricatus, III, 58 vadosus, III, 58
Epicauta einerea, Supp., 54 pensylvanica, Supp., 54
Epilachna borcalis, I $\mathrm{V}, 18$
Epimenis, the Grape-vine, VI, 87
epimenis, Psychomorpha, III, 63, 64, V I. 87, 88, 90,95
Epitrix, Supp., 53
Eragrostis poceoiles, VIII, 122
Erax, II, 122, 123
bustardii, II, 124, IX, 98
lictor, II, 124
tabescens, II, 124
Eriosoma, VII, 97
lenigera, I, 121, III, 95, IV, 69, VI, 63
pyri, I, 118, III, $5,95,96,1 ' \mathrm{I}, 37, \mathrm{IX}, 43$, Supip, 59, 87
rilcyi, Supp., 87
ulmi, I, 123, Supp., 87
eriosomatis, Chrysopa, I, 123
erippus, Danceis, III, 143

Eromophila cornuta, IX, 91
Erwin, J. L., on Fall Army-worm, III, 110
Eryeinidde, V I, 138
Erynnis alcoe, VIII, 182 inalverum, VIII, 182
Erysiphc, V, 70
erythrocephalus, Melanerpes, V III, 124
erythrocerus, Bruchus, III, 55, 56, Supp., 70
crythrophthalmus, Coccyzus, III, 121, VI, 27
Eucheres egle, I, 139, III, 133, IV, 41
Euclea, VI, 140
penulata, V, 126
querceti, Г, 126
Eudemis, Supp., 57 botrana, Supp., 57
Eudryas brevipennis, TI, 91 grata, I, 136, II, 83, V I, 88, 89, 95 unio, I, 136, II, 83, III, 63, V I, 90, 92, 9
Euftehia ribearia, IX, 3
Eulophus, IV, 51
Eumenes fraternx. II, 103
Eunemoria gracilaria, Supp., i9
Eupelmides, Supp., 52
Eupelmus, VI, 162, Supp., 52
Euphanessa mendica, IX, 6
Euplexoptera, V, 16
Eupsalis minuta, ГI, 113, 117
Europe, American plants and insects acclimate cf in, IX, 43
Europtan Cattle Breeze-ffy, II, 129
Cock-chafer, I, 157
Meal Worm, IX, 43
Oak Phylloxera, VI, 46, 64, VIII, 158
Euryomia inda, III, 6
melaneholica, III, 6, V, 154
Euryptychia, II, 134
saligneana, II, 134, Supp., 57
Eurytoma, I, 52
bolteri. I, 177, Supp., 68
diastrophi, Supp., 68
Eurytomides, Supp., 68
Euschemon Raffesioe, VIII, 170
Euschistus punctipcs, I, 113, IV, 19, 20, V, 12, Supp... 58
variolarius, Supp., 58
Euиra, IX, 23
Evans, J. C., on Rocky Mountain Locust, IX, 70
Everett, H., on Chinch Bug remedy, II, 29, VII. 35
Evolution, III, 159, VIII, 170
exitiosa, Egeria, I, 47
Exodus of Locusts, V III, 104
exoleta, Calocainpa, VIII, 23
Exorista Jlavieauda, II, 51, V III, 53, Supp, 60, 88 lечеапice, II, 50, 51, III, 116, 129, IV, 108

VIII, 33, Supp., 60
var. cecropice. IV, 108, Supp., 6C -
militaris. II, 50, I II, 129, IV, 109
Osten-Sackenii, II, 51
phyeite, IV, 40, Supp., 88
extcrmum, Calosoma, TIII, 52
extranca, Leucania, II, 50
extrematis, Crgptus, IV, 110, 111, 123, Supp., 52
Eyed Emperor, V I. 137

$$
\mathbf{F}^{2}
$$

faboe. Bruehus, III, 52, 55, Supp., 69. 70, i1
fabricii, Lytta, I, 99

Fall Army-worm, III, 109, 150, VI, 17, VIII, 23, 35, 37,48
How it differs from the true Army Worm. III, 112, VIII, 48
Remedies for, III, 114
Fall Canker Worm, VII, 83, VIII, 18
Web Worm, II, 11, III, 130
Natural history of, III. 130
Remedies for, III, 132
Fairchild, H. O., on Phrlloxera, VI, 83
fallax, Epiccerus, III, 5s
falsarius, Acoloithus, II, 86
False Chinch Bng, V, 111, VII, 46
Indigo Gall-moth, II, 132
Farris, M. WH., on Rocky Mountaiu Locust, IX, 69 fasciatus, EEcanthus, Supp., 60
fascicularis, Hemirhipus, VI, 101
fastidinsa, Chrysobothris, VII, 71
Fasting to avert locnst injury, VIII, 96
Faucon, Louis, on irrigation as remerly for Pleylloxera, $\mathrm{V}, 72$
Faulkner, Dr. S. K., ou Rocky Mountain Locust, VII, 140
femorata, Chrysobothris, I, 46, III, 6, VII, 71, Supp., 67

Tiphia, VI, 124

femoratum, S'pectrum, VI, 156
femoratıs, Micropus, V II, এ2
femur-rubrum, Caloptenus, VII, 126, VIII, 114, 115, $116,117,118,153$, Supp., 89, 90
Ferguson, J. T., on Rocky Monutaiu Locust, IX, 73
Ferris, Peter, on Tent Caterpillar, III, 125
Fever Worm, IV, 142, 144
Fidia murina, Supp., 53
viticida, I, 132, Supp., 53
vitis, Supp., 33
Fiery Ground-beetle, I, 89, 115, II, 46, 103
Fifteen-spotted Ladybird, IV, 17
Figure 8 minor, I, 86
Filbert-gall, the Grape-vine, $\mathrm{V}, 116$
Fillery, Wm. H., on Rocky Mountain Locust, IX, 75
finbriatus, Stiretrus, I, 114, IV, 20
Fiue. F. F., on Rocky Monntain Locust, IX, 71
Fires for Codling Moth, IV, 27
Fishborne, Dr. J. H., on poisoniag by Colorado Putato-beetle, VII, 7
Fisher, H. I., on Rocky Mountain Loevist, IX, 85
Fisher, J. C., on Periodical Cicada, I, 30
Fitch, Col. H., on Rocks Mouutain Locust, IX, 71
Fitch, Dr. Asa, on Army Worm, II, 43, VIII, 25,50
on Bee-killer, II, 122
on Curculio parasite, III, 24
on Gooseberry Fruit-worm, I, 140
on Pearl Wood Nymph, II, 84
on Teut Caterpillar, III, 123, $\mathbf{1 2 7}$.
fitchii, Promachus, Supp., 60
Flat-headed Apple-tree Borer, I, 46, 47, VII, 71
Enemies of, VII, 73
Natural history of, VII, 72
Remedies for, I, 47, VII. 76
Flat-headed Borer, III, 6, VI, 107, 109
Flea-beetle, IV, 35
-like Negro•bng II, 33, 3t, V II, 48
Fleas, characteristics of, $\mathrm{V}, 15$
Jivicauda, Exorista, II, 5I, VIII, 53, Supp., 60, 88
flavicorne, Anomalon, III, 69
Havida. Colaspıs, III, 41, 61, 82, IV, 34
flavifrons, Scolia, TI, 124
flavimanus, Bruchus, III, 56, Supp., 70
flavimedia, Protenia, Supp., 56
Flesh-fly, the common, VII, 180 the Sarracenia, VII, 181
Flower-beetles, III, 6
-bag, the Insidions, VII, 41, 47
Fly-catcher, Great-crestel, destroying Locnsts, VIII. 124
poison as remedy for Potato Bag, IV, 14
Ford, S. H., apparatus of, for lestrosiug Potato Bugs, I, 116
forcata, Phylloxera, V II, 118
Forest Caterpillar, III, 129

- flies, $\mathrm{V}, 13$

Tent-caterpillar, III, 121, 124, 128
Forester, the Eight-spotted, VI, 94
Forficulides, Characteristics of, V, 16
formilulosus, Epicoerus, III, 53
formosa, Pepsis, II, 106
Foster, E. S. on Broad-uecked Priouns, II, 88
Foster, Suel, on remedy for Codling Moth, I, 65 ou Potato Beetle, I, 110
Fox-alnve leares as remedy for Gooseberry Span. wolm, IX, 7
fragarice, Analcis, III, 42, 44, Supp., 71
Anchylopera, I, 142, Supp., 57
Tyloderma, Supp., 72
fraterna, Eumenes, II, 103
Fraternal Potter-wasp, II, 103
Fringe-winc. VI, 50
frontalis, Termes, II, 11
Frosted Lightniug-hopper, $V, 122$
frugiperda, Laphygma, II, 41
Phaloena, VIII, 48
fugitiva, Linneria, $, ~ 41,141$
fugitivus, Banchus, IT, 41
Campoplex, I, 139
Fulgoridee, V, 122
Fuller, A. S., on Grape-vine graftiug, VII, 109
on Le Coute's Pine Worm, IX, 33
on Seed-corn maggot, I, 154
fulvicosta, Callimorpha, III, 132, 134, VI, 92, Supp., 55
fulvivenosus, Micropus, VII, 22
fulvosa, L pphygma. III, 117, VIII, 49
Fur-moth. II, 10
Furnas, R. W., on Locust injury in Nebraska, V II 151, 152
fusca, Lachnosterna, Supp., 53
fuscescens, Turdus, VI, 27
fuscipennis, Mesochorus, VII, 75

C.

Gad-Hy, V, 13
Galeruca calmariensis, II, 9, 10, 95, VII, 5, 86
Gallicola or gall-inhabiting type of Phylloxera, V, 63, VI, 34, 66
galluesolidaginis, Geiechia, I, 13, 173, II, 20, 132, 134, III, 158, Supp., 66, 83
Gall-curculio of the grape, I, 131
Gallerer cereana, I, 166, II, 10
Gall-gnat, $\mathrm{V}, 114$
gallicola, Phylloxera, VII, 93
Gall-louse, Grape-leaf, IV, 55, 66, 63, V, 63

Gall-moth, False Indigo, II, 132
The Misuamed, II, 134
of the Golden-roll, I, 173
-moths known to occur in the Tuited States, II, 135
nut, V, 18
Gall, the Grape-vine Apple, V, 114
Filbert, V, 116
'Tomato, V, 117
Trumpet, V, 118
Salicis-strobiloides, VI, 155
Vitis-coryloides, V, 116
pomum, V. 114
tomatos, V, 117
viticola, V, 118
Galls, Aphidian, on Hickory, $V, 154$
How produced, VI, 70
made by moths, II, 132
Garber, J. B., ou irrigating Grape-vines, VI, 76
Gardener's Chronicle, article from, on Colorado Potato-beetle, VII, 5
article from, on Yucca fertilization, $V, 159$
garrulus, Ainpelis, V II, 90
Gattine, a disease of Silkworms, IV, 91
Gazera, VIII, 178
Gclechia galloesolidaginis, I, 13, 173, II, 20, 132, 134,
III, 158, Supp., 66, 83
longifasciella, Supp., 83
gclechice, Mierogaster, I, 178, Supp., 66
geminatus, Paniscus, I, 89
Genitalia of male Army Worm, VIII, 30
Geographical range of species, VII, 171, IX, 22
Geometer of the Chick-weed, I, 179
Geopinus incrassatux, I, 77
Georgetown Miner, article from, on Rocky Mountain Locnst, $I X, 62$
Geothlypis trichas, VI, 27
germanica, Ectobia, II, 10
gigantea, Buprestis, IV, 141
Gigantic Root-borers, III, 75
Gillman, Heury, on Colorado Potato-beetle, VI, 12
glaberrimuın, Orchelimum, Supp., 62
Gladish, James E, on Rocky Mountain Locust, IX, 73
glandulelle, Holcocera, IV, 144
Glassy Cut-worm, I, 83
Mesochorus, II, 52, VIII, 53
-winged Soidier-bug, III, 137
glomeratus, Microgaster, III, 167
Glover, T., on Boll Worm, III, 106, 107, 108
on Paris green for Cotton Worm, III, 19
glycerium, Paphia, II, 125, 127
Glyphe viridascens, II, 53, VIII, 53
Goat-weed Butterfiy, II, 125, V, 145
Additional facts in its history, V, 145
Its winter quarters, V, 148
Larval changes, V, 146
Natural enemies, V, 149
New foorl-plant, $\mathrm{V}, 147$
The egg, $\Gamma, 146$
The larva, V, 146
Two broods each year, V, 148
Göerius olens, IV, 21
Gold-banded Tachina-flr, V, 140

Gol len-crowned Thrush destroying CankerWorm. VI, 27
Robin destroying Canker Worm, VI, 28 -rod Gall-moth, I, 173, III, 158
Tortoise-bectle, II, 60, 62
-winged Woodpecker destroying Canker Worm, VI, 28
Goniloba, II, 125, V. 1i6
Goodman, W. S., (In Army Worm, VIII, 39
on Rocky Monutain Locnst, IX, 74, 119
Gooseberry Fruit-worm, I, 140, II, 9 Worms, IX, 1 Span Worm, IX, 3

A native species, IX, 5
How it spreads, $I X, 5$
It prefers the Gooseberry to the Currant, IX, 6
Its natural history, IX, 3
Its past history, IX, 5
Parasites, IX, 6
Itmedies, IX, 6
The moth is closely imitated. IS, 6
Gordix, VIII, 124
Gordius aquaticus, IJ, 98
Gortyna ncbris, supp., 56
nitela. I, 92, III, 105, VIII, 37, Supp., 56
Gothic Dart, I, 81
gracilaria, Eunemoriu, Supp, 79
Grafting, VI, 79
Grain Bruchus, III, 45, 50, 51, 54
Plant-louse, II, 5, 10, 16
Sylvanus, III, 6
Weevil, II, 10, III, 60
grallator, Cryptus, V II, 75
Labena, VII, 75
graminis, Bombyx, II, 44
granarius, Bruchus, II, 11, 14, III, 50, 51
Sitophitus, II, 10, III, 60
Grand-daddy-loug-legs, IV, 17
Grandfather-G1ay-Beards, IV, 17
grandis, Lebia, III, 100, Supp., 52
Stizus, I, 27, Supp., 52
granulata, Tettix, VIII, 150
Granulated Grouse-locust, VIII, $1 \overline{5} 0$
Grape-berry Moth, III, 90
-cane curculio, UI, 60 Gall eurculio, I, 131

Femedy for, I, 132
Codling, I, 133
Remedy for, I, 135
Curculio, I, 128, III, 60
Fidia, V, 108
Gall curculio. I, 181
Gall-louse, III, 90, 92, 96, IV, 66
-grower, a new friend to the, III, 137
leaf-lonse, III, 88, 94 Trumpet-gall, V, 118
Grape Phylloxera, III. 84, IV, 55, 67, $\nabla, 57,63, \mathrm{VI}$, 30, VII, 41, 90, VIII, 157, IS, 43
Bibliographical, VI, 30
Biological, VI, 33
Completion of its natural history, VII, 90 , VIII, 157
Conclusions, I $V, 70, \nabla I, 65$

Trape Phylloxera-Continued.
Different forms which the insect assnmes, VI, 33, VII, 93
Direct remerlies, VI, 55, VII, 105
Early existence in America, VI, 82, 83
liirst appearance iu California, VI, 8 ?
False theories, VI, 60
Gall-inhabiting type, VI, 34. 66, 67
Grafting as a mrans of counteractiug the work of, IV, 65, V II, 108
Impregnated egg not necessariiy hibernal, VI, 86
Injury caused by it in America, VI, 58, VII, 99
France, VII, 103
Its spread in Enrope, V, 63, VII, 104
Male louse, V, 71
Means of contagiou from one viue to another, IV, 64, V, 69
Mode of spreading, V I, 45
Mortality of vines cansed by it, $\mathrm{V}, 57$
Natural enemies, VI, 50, VII, 106
New theories, V, 67
Occurrence iu Southern States, VIII, 164
Other preventive measures, VI, 50
Practical considerations, IV, 67, VI, 44, VIII, 163
Probable reasons why its injuries are greater in Europe than with us, IV, 66
Prophylactic means of coping with the disease, VI, 48
Range of the insect in America, $\nabla, 62, V I, 57$, VII, 101
Ravages of, in California, VI, 82, VIII, 163
Real cause of disease, VI, 85
Remedies, IV, 68, V, 71, VI, 55, VII, 105
Resolutions concerning destruction of, VIII, 165
Résumé of its natural history, IV, 69
Root-inhabiting type, IV, 58, VI, 38, 66
Scxed individuals, VII, 86, 98, VIII, 158
Specific identity of the root-inhabiting and leaf-inhabiting types, IV, 57, VII, 94
Specific identity of the American and European insects, III, 86, IV, 57
Susceptibility of different viues to the disease, IV, 60, V, 64, VI, 46, VII, 106
The more manifest aud external effects of the disease, VI, 44
Trausient nature of the galls, $\mathrm{V}, 63$
Type gallicola or gall-inhabiting, VI, 34, 66, 67
Type radicicola or root-inhabiting, VI, 38, 66
Where do the winged females las their eggs ? VII, 96
Why the insect is more injurious in Europe than here, VI, 59
Grape-root-borer, I, 124
Iicmedies for, I, 128
'Grape-seed Curculio, I, 129
-seed Maggot, II, 92
Trape-vine Apple Gall, V, 114, 115
, Blne Caterpillars of, I, 136, II, 79
Colaspis, III, 44, 62, 81, IV, 34
Epimenis, III, 63, 65, VI, 87
Flea-bertle, 1II, 79
Fidia, I, 132, 133
Filbert Gall, V, 116
Hog-caterpillar of, II, 71
Insects injurious to, I, 124, II, 71

Grape-vine Gall-louse (see Grape Phylloxera)
Leaf-folder, III, 61
Leaf-gall-louse (see Grape Phylloxera)
Plume, I, 137, III, 65, 66, 67, 68, IV, 129
Procris, II, 85, V, 134
Root-borer, I, 124, III, 75
Tomato Gall, $\mathrm{V}, 117$
Trumpet Gall, V, 118
Gropholitha oculana, III. 6
Graphiphora, I, 79
Grap,ty, III. 103, V, 149
Graptodera, Supp., 53
Grasserie, a cisease of Silkworms, IV, 91
Grasshol pers, a division of Orthoptera, $\nabla, 14$

grataria, Hcematopis, I, 119
Gray, Alfred, on Rocky Mountain Locust, VII, 148, 149
Gray's Improved Sprinkler, V II, 15
Greasy Cut-worm, I, 80
Great-crested Fly-catcher destroying Locusts, VIII, 124
Lebia, III, 100
Leopard moth, IV, 141
Green Apple-leaf Tyer, IV, 46
-head Fly, II, 128
larra of White-lined Morning-sphinx, VIII, 122
striped Locust, V III, 149
Maple Worm, $\nabla, 137$
Larval changes, $\mathrm{V}, 133$
Natural enemies, $V, 139$
Remedies, $\mathrm{V}, 141$
Gregg, Jacob, on Rocky Mountain Locust, IX, 73
grossularire, Pempelia, I, 140, II, 9, Supp., 57
grossulariata, Abraxas, IX, 5
grossulariella, Phycis, Supp., 57
Grote, A. R., on poisonous properties of Doryphora,
VIII, 10, 11
Ground-beetle larra preging on Curculio larvæ, I, 59
larvat preying on locust eggs, 1X, 97
The Elongate, I, 115
The Fiery, I, 89, 115
The Murky, I, 115
The Pennsylvania, I, 59
The subangular, I, 58
Grounl-beetles destroying Canker Worms, II 103
Locnsts, IX, 98
grylleria, 1 stoma, V II, 175, Supp., 63
Gryllide, stridulating apparatus of, VI, 154
Gryllus erythropus, VII, 126
niger. II, 152
Gubernaculum oci, IX, 87
Guerinii, Attacus, IV, 112, 113
Guiraca ludoviciona, V, 54
guttetu, Oassida, II, 60, 63
Coptocycla, Supp., 53
I.

Habit, change of, III, 91
Hackberry Butterflies, VI, 136
Hadenc, I, 68, supp., 56
amputatrix, I, 87
chenopodii, Supp., 70, 77
subjuncta, I, 84

Hacckel, Prof. E., on the nuity of mature, III, 174
Hrematopis grataria, I, 179
Hair-worms, IX. 98
Malesidota IIarrisii, III, 127
tesselnta, III, 127
Half-winged Bugs, characteristica of, V, 12
Hall, William, on Chinch Bugand Locust, VIII. 76
Haltica chalybet, I, 101. III, 79, 81, Supp.. 53
cucumoris, I, 101, II, 5-, V, 11:2, Supp., 53
nemorum, I, 101
pubescens, I, 101
thois, V I, 122
stolida, V I, 122 striolata, III, 44
Ham-beetle, the Red-legged, VI, 96
Hammond, A. C., on Apple-leaf Skeletonizer, IV, 45
hammondi, Acrobasis, III, 7

$$
\text { Pempelia, IV, 44, 43, Supp., } 80
$$

Hammond's Knot-horn, IV, 45
Hanan, B., on Oyster-shell Bark-lousq, V, 74
Hand-maid Moth, III, 124
Hanway, James, on Focky Mountain Locnst, VIII, 102
Hardin, Gov. C. H., proclamation by, V III, 95
Harlequin Cabbage-bug, IV, 35
Harman, M. B. W., on Rocky Mountain Locust, IX, 74
Hurmonia picta, Supp., 52
Harpactor cinctus, I, 114, V II, 41, Supp., 58
Harpalus? Larve feeding on lochst eggs, IX, 97
Harpalus caliginosus, I, 115, VIII, 52
pennsylnanicus, I, 59, VIII, 52, IX, 98
Harris, Dr. T. W., on hibernation of Disippus Buttertly, III, 155
on Orster-shell Bark-louse, ∇, 79
on Poplar Spinner, II, 19
on Tent-caterpillar, III, 121
harrisii. Aspidiotus, I, 7, II, 9, Supp., 60
Halesidota, III, 127
Harris's Bark-louse, I, 7, II, 9
Harrest-flies, II. 131
-men, IV, 17
mites, V I, 122
Hateful Locust, VII, 188, 190
Hawk Moth, II, 76, IV, 86, V, 12
Har-worm, the Clover, VI, 102
Hagen, Dr. H. A., on the distinction of Cicade, I, 21
Head Maggot, I, 161
Heard,.J. M., Boll-worm Moth Trap, II L, 109
Heart-worm of cabbage, II, 107
Heary rains destructive to the Chinch Bug, II, 24
Hecker, Fred., on remedy for Potato-beetle, VIII, 4
Hedge-hoy Caterpillar, IY, 143, 144
Hedya scudderiant, Supp., 57
Heliconidie, ILI, 103
Heliconi"s melpomene, III, 173
thelxiope, III, 173
Helimhila, VIII, 2?
Heliothis armigera. III, 45, 104, IV, 129
Hellebore for Currant worms. LX, 7, 13, 14. 15
Potato bugs, I $\overline{\text { r }}$, it
White Pine Worm, LX, 32
Mellgrammite, $\mathrm{F}, 142$, IX, 125
Characters of the young larva, $I X, 127$

Hellgrammite-Continned.
Eggs hitherto supposell to brlong to it. IS, 128 Its curious egg-mas., IX, 126
The larea lises in rapid flowing streams, IX, 128
Where and how the eggs are laid, IX, 127
Helminth rphaga ruficapilla, VI, 27
Helins, Abrahan, on Rocky Mountain Locust, VIII, 91
Hemilenca californica, $V, 190$
maia, $\mathrm{V}, 127$
nevadensis, $\mathrm{V}, 128$
Hemiptera, classification of, $\mathrm{V}, 12$
Preparing of for cabinet, $V, 34$
Hemirhipus fascicularis, VI, 10 I
Hemiteles cressonii, I, 177, Supp., 65
nemativorus, IX, 17
(?) thyridopterigis, I, L50, Supp., 65
Eentzii, Mygale, II, 106
herbimacula, Deloena, I, 86
herilis, Agrotis, Supp., 55
Herschell, C., on Locusts, VIII, 151
herse, A patura, VI, 136, 140, Its
Herse Buttertyy, V1, 148
Hesperia, VIII, 175
Hesperides. VIII, 176
Пessiau Fly. II, 10, 16, 17, 19, III, 110, 1:1, IV, 67, V, 13, 25, VII, 22, 27, 36
parasite, III, 120
Heterocera, a section of Lepidoptera, V, 12
Heteromera. a section of Coleoptera, V, 10
Heteroptera, a section of Hemiptera, V, 12
Hewitt, H L., on Rocky Mountain Locust, IX, 69 hibisci, Bruchus, Supp., 70, 71
Hickman, G. B., on Rocky Mountain Locust, LX, 69
Hickory Bark-borer, V, 62, 103, 104
Natural enemies of, V, I06
Remedies for, $\mathrm{V}, 107$
Hickory Borer, VI, 101
hilarana, Cochylis, I, 175, II, 135
Hill, John, on Rocky Mountain Locust, IX, 75
Hipparchia, VI, 143
Hippobosca, VII, 91
Hippobnscidee, V, 13
Hippodamia convergens, I, 112
glacialis, IV, 18
maculata, I, 1L2, II, $2 \overline{5}, \mathrm{~V}, 149$, VII, 39 , Supp., 52
13-punctata, I, 112
histrionica, Murgantia, IV, 35
strachia, IV, 35
Hoag, C. I.., on Flat-headed Borer, VII, 74
Hoag, I. N., on silk culture, IV, 80
Hockeria perpulera, II, 53
Hoffmeister, A. W., on Colorado Potato-beetle, VII, 14
on Army Worm, VIII, 29
Hogan, John H., on Grape-root Borer, I, 125
Hog-caterpillar of the vine, II, 71, 75
Hogs as Apple-worm destroyers, I, 65
Curculio destroyers, I, 59
Holcocera glandulella, IV, 144, 145
Hohmes, W m. C., on Tile-horned Prionus, II 90 holosericeum, Trombidium, VII, 175
Holsinger, Frauk, on destrofing Locusts, VIII, 127 Holt County Sentincl, article from, on Rocky Mountaín Locust, VIII, 69

Homely Geopinus, I. 89
Homeosoma, Supp., 57
Homoptera, a section of Hemiptera, V, 12
Homopus, VII, 106
Honey-bee, insect enemies of, I, 160, TI, 101
Honey locust seed-weevil, III, 45
Honora, Supp., 57
Hooten's Curculio-catcher, III, 22. 23
Hopkins, B. F., on Rocky Mountain Locust, V II, 151
Hoplophora arctata, VI, 53, 81. VII, 106 contractilis, VI, 54
Hopps, Michael, on remedy for Chinch Bug, II, 30 hordci, Isosoma, II, 92
Horned Lark destroying Locust eggs, IX. 91
Horned Passalus, IV, 139
eggs of, $\mathrm{V}, 55$
Horner, C. C., on machine for destroying Locusts, VIII, 129
Hornet, sting of the, I, 27
Horn-tails, V, 10
Hostetter, C. J., on Rocky Mountain Locust, IX, 71
House Pigeon destroying Ca
Howard, Sanford, on remedy for Canker Worm, I1, 100
How to collect, preserve, and stady insects, $\Gamma, 29$ counterwork noxious insects, $V, 23$ transmit insects, $\mathrm{V}, 44$
Huggins, J., on Canker Worm, II, 101
Hull, Dr. E. S. on Canker Worm, II, 101
on Grape-vine Flea-beetle, III, 81 on scab in Apples, II, 7
Hull's Curculio-catcher, III, 19
Modification of, $\mathrm{V}, 25$
Hurlburt, J., on Colorado Potato-beetle, IV, 9
Husmann, Geo., on grape-vine grafting, VII, 109, 110, 111
pruning, VI, 84
on importance of Phyllosera discoveries, IV, 55
Huttoni, Bombyx, IV, 85
Hyalophora cecropia, IV, 103
Hybernia, VIII. 17
Hydrocorisa, a division of Heteroptera, V, 12
Hylecetus americanus, III, 7
Hymenoptera, characters and classification of, V, 9
Hyperchiria io, V, 133
varia, $\mathrm{V}, 133$
Hyperaspis uormata, $V, 100$
Hyphantria cunea, Supp., 55
punctata, Supp., 55
textor, III, 130, 132, Supp., 55
Hypagymna dispar, II, 10
Пурория, VI, 52, VII, 106
dujardinii, VI, 53
Hypsopigia, VI, 105

1.

Ichneumon brevipennis, IX, 55 leucanice, II, 53, V III, 54
obsoletus, IX, 55
pullatus, IHI, 69
signatipes, II1, 69
subcyaneus, 1II, 69
unifasciatorius, I1I, 71

Ichneunrin'dce, III, 27, 22, Supp., 65
Icterus Ealtimore, VI, 27
Icy La dybird, IV, 18
Idol, J. K. P., on Rocky Mountain Locust, IX, $7 ¢$
idyja, A patura. VI, 145
ignota, Rhodites, I, 13
Illinois Lace-wing, II, 26, V II, 39
Locust flights in, VIII, 151
illinoicusis, Chrysopa, I1, 26, VII, 39, 40
1 mbricated snout-beetle, III, 58
imbricator, Pemphigus, I, 121
imbricatus, Epiccerus, III, 58
imbricornis, Prionus, II, 89, III, 6, 75
immarginatus, Micropus, VII, 22
Importauce of Entomology as a study, V, 17
Imported Apple-worm, I, 108
Cabbage Worm, II, 107
Imported Currant Worm, II, 13, VI, 43, 149, IX, 7 Descriptire, IX, 21
It furnishes an interesting instance of defunctionation of special parts, IX, 19
It presents a forcible exanple of Arrenotoky IX, 18
Its introduction and spread, IX, 8
Its natural history, IX, 9
Natural enemies, IX, 17
Preventive measures, IX, 13
Remedies, IX, 13
Imported v8. Native American Insects, II, 8,106, 107, VII, 5
Imported Ouion-fly, II, 9
Oyster-shell Bark-louse, II, 9
Improved Patent Insect Destroyer, IV, 15
impura, Leucania, VIII, 38
inequalis, Celoides, I, 128, Supp., 54
incertus, Melanotus, III, 6
Incrassated Geopinus, I, 77
incrassatus, Geopinus, I, 77
inda, Euryomia, I1I, 6
indagator, Perilitus, IV, 43, Supp., 66
indagatrix, Pimpla, IV, 43
indecisa, Egiale, VIII, 179
Indigo-bird destroying Canker Worm, VI, 27
Indian Territory, locusts in, VIII, 88, IX, 76, 78
indiginella, Myclois, IV, 38
inermis, Agrotis, I, 72, 74, II, 50, III, 15, 129, FIII, 3 т Supp., 55
infecta, Celrena, Supp., 56
Inflating Chalcis fly, I, 176
Influence of food in determining sex, VIII, 19
Influence of wind in detcrmining the course of locust swarms, IX, 81
Ingalls, Senator, Introduction of bill in Congress for destruction of injurious insects, $\mathrm{V}, 183$
Innoxious insects, L, 172, II, 125, III, 140, V, 142, V I, 127, V III, 169, IX, 125
inornata, Amphipyra, III, 75
Tiphia, VI, 123
inquisitor, Cryptus, I, 150
Insecta, number of joints in, V, 7
Insect enemies of the Honey-bee, I, 166
domestication, IV, 85.
What is an? V, 5
Insects, Breeding, V, 41
Cabinet and boxes for, V, 37
How to connterwork nosious, $V, 23$

Insects, How to collect, preserve, and stuly, $V, 29$ transmit, V, 42, 44
Imported and Native Awerican, II, 8 Infesting the Apple-tree, III, 5, 6

Grape-vine, I, 124, II, 71, III, 61, IV, 53, V, 114, VI, 30
Potato, I, 91
Sweet-potato, II, 56
Mounting, for cabinet, $\Gamma, 34$
Rearing, V, 41
Relation of to agriculture, $V, 18$
Relaxing dry, V, 41
Text-books on, V, 42 Transmitting, V, 44
insidiosus, Anthocoris, II, 27, 32, VI, 51, VII, 41, Supp., 58
Insidions Flower-bng, II, 27, 32, VI, 51, VII, 41 47
Instinct, Curions, III, 156
Philosophy of, V, 83 vs. reason, V, 83, 157
interrupta, Acronycta, II, 121, Supp., 73
interruptus, Passalus, IV, 141
Io Moth, V, 133
Food plants, $\bar{\Gamma}, 136$
Larval changes, $V, 135$
Parasites, V, 136
Iowa, Rock5 Mountain Locust in, VIII, 81, IX, 63 iris, Apatura, VI, 136
Irrigation as remedy for Chinch Bug, V II, 31
Phylloxera, IV. 69, VI, 55
Rocky Mountain Locust, VII, 182
irvitans, Leptus, VII, 177
Irritating Harvest Mite, V II, 177
property of caterpillars, $\mathrm{V}, 131$
various insects, VI, 70
Irvine, Clarke, on Rocky Monntain Locust, VIII, 105, IX, 72
isabella, Aretia, IV, 143, Supp., 55
Isabelia Tiger Moth, IV, 143
Iske, Authony, Machine for destroying Potatobeetles, VIII, 4
isocrates, Thecla, VIII, 177
Isosoma hordei, II, 92
vitis, II, 92, 93
italicus, Caloptenus, V II, 133, V III, 140
Ithomia, III, 161, 165
Ithycerus noveboracensis, III, 6, 57
Ituna, III, 103

J.

jaculifera, Agrotis, I, 82, 83, Supp., 56
Jarring as remedy for A pple-worm, IV, 25
Jefferson City Tribune, article from, on Army Worm, VIII, 50
article from, on Rocky Hountain Locnst, VIII, 108
Jewett, D. T., on growing European grape-vines, VI, 77, 78
Johnson, B. F., on Locusts, V III, 152
Johnson, C. V., on Colorado Potato-beetle, VIII, 10
Johnson, Prot. J. W., on Paris Green, V'II, 11
Johnson, J. W., Surinkling machine invented by, VI, 20
Joint-worm Fly, II, 92
Jones, H. L., on Rocky Mountain Locust, V II, 150

Jordan, C. W., on Rocky Mountain Locust, IX, 70 Journel of Agriculture, article from, on Fall Army Worm, III, 109, 110
article from, on Pickle Worm, II, 69
article from, on remedy for Peach Borer, I, 49
juglandis, Acrobasis, IV, 42, 43, Supp., 67, 80
Conotrachelus, Supp., 54
Phycita, Supp., 80
Jumping Sumach-beetle, VI, 118
Natural history of, VI, 120
Remedies for, VI, 121
Jumping Tree-cricket, I, 138, $\nabla, 119$
juncta, Doryphora, I, 103, 105, VII, 18, IX, 39
iuvenalis, Nisoniades, III, 155

IK.

kansanus, Brachinus. IT, 21
Kansas acts to encourage the desfruction of Locnsts, IX, 112, 113
Bombardier-beetle, IV, 21
Kansas City Journol of Oommerce, articles from, on Rocky Mountain Locust, VIII, 59, 107
Times, article from, on Rocky Mountain Locust ravages, VIII, 74
Kansas Farmer, article from, on Army Worm, III, 110
article from, on remedy for Locnsts, VII, 184
Kansas, legislation in, regarding Locusts, IX, 112, 113
Locusts in, VIII, 76, IX, $6 \overline{5}$
Silk culture in, IV, 82
State relief work, VIIL, 78
Katydid, Angular-winged, VI, 155
Oviposition of, VI, 156
Eggs of, VI, 155, 158
Earlier stages of, V I, 158, 161
Song of, VI, 159
Natural enemies of, VI, 162
Katydid, Broad-winged, VI, 167
Oviposition of, V I, 167
Katydid, Narrow-winged, V, 124, VI, 164
Oblong-winged, V, 123, VI, 169
Katydiels, VI, 150
Characteristics of, VI, 154
Oviposition of, VI, 155, VIIL, 37
Stridnlation of, VI, 154
Kaucher, Wim., on Rocky Mountain Locust, IX, 72
Kayser, A., on poisonous qualities of Doryphora, VIII. 11

Kedzie, Prof. W. K., on influ nce of Paris Green on soil, V II, 12, VIII, 6
on the use of Paris Green, V, 53, VIII, 6
Kelsey, S. J., on remedy for Chinch Bug, VII, 42
on Focky Mountain Lor ust, V II, 135, 164, 193
Kerosene as remedy for Canker Worm, VIII, 20
Flat-head Apple - tree Borer, VII, 78
Locusts, V III, 130
Killing insects iutemded for cabin $t, \nabla, 32$
Kimbertin, J., ou Rocks Mountain Lucust, LX, 68

King．Bennet，on Rocky．Mountain Locust，IX， 72
King Bird destroying Canker Worm，VI， 27
Kirkpatrick，J．，on Army Worm，II， 43
Klæger．W．，insect pins manufactured by， $\mathrm{V}, 34$
Klippart，H．J．，on Army Worm．II． 47
Knot－horn，Hammond｀s，I V， 45
Knotweed Geometer，I， 179
kollari，Agiale，VIII， 179
Krimminger，W．B．，on Rocky Mountain Locust， VIII， 63
Kuwa jirami，I「， 100

L．

Labena grallator，VंII， 75
Labium of Hymenoptera，Г， 9
Lace－wing Fly，IV， 45

> The Ilinois, II, 25
> The Weeping, II, 26 , VI, 51

Lacewing larva，I，57，II， 27
Lachnosterna fusca，Supp．， 53
quercina，I，57，67，II，19，V，55，VI，
123，VII，27，Supp．， 53
Ladybird，II，25，VI， 51
The Convergent，I， 112
The 15 －spotted，IV， 17
The 9 －spotted，I， 112
The Spotted，I， 112
The 13－spotted，I， 112
Ladybirds，I，112，II，27，V，11， 27
Lac̈rtias，Supp．， 54
Lagoa crispata，V， 126
opercularis，Г， 126
Lalage，V， 140
Lancaster Farmer，article from，on Colorado Po－ tato－beetle，IX， 35
Lance Rustic，I， 80
Land Bugs，a dirision of Heteroptera，V， 12
lanigera，Eriosoma，I，121，III，95，IV，69，VI， 63 Schizoneura，Supp．， 59
Langworthy，A．J．，on Apple－leaf Bucculatrix，IV 50
on Army Worm，VIII， 42
Laphygma frugiperda，II， 41
lardarius，Dcrmestex，VI， 100
Larder－beetle，VI， 100
Large Black Bear，IV， 141
Larra，the second stage of insect development， V， 7
Larva，Stinging，$\nabla, 125$
Lasioptcra vitis，V， 117
lateralis，Corimeliena，II， 35
Ophion，II， 53
laticollis，Prionus，II，87，III，6， 75
latipennis，Ecanthus，Supp．，60， 61
Latreille，life of，saved by an insect，VI， 101
Latreillia，V， 140
Law of priorits，IV，55，VII，143，VIII，179，IX， 7
Lay，J．H．，on Rocky Mountain Locust，IX， 69
Leaf－beetle，the Elm，VII， 5
－bug，the Ash－gray，VII， 47
－crumpler，III， 7
the Rascal．IV，38，VII， 81
－folder，the Lesser，IV， 47
－hoppers，III， 6 mistaken for Locusts，VIII， 150
－roller of the Strawberry，I，142

Leaf－rollers，III， 6
－trer，the Green Apple，IT， 46
Least Pewee destroying Canker Worm，VI， 27
Le Baron，Dr．Wm．，description of Locust Mite by，VII， 176
on Aphelinus mytilaspidis， V， 87
on Apple Worm．VI， 10
on Pine－leaf Scale， $\mathrm{V}, 84$
on remedies for Canker Worm，VI， 24
Lebia atriventris，VIII，3，Supp．， 52
grandis，III，100，VIII，3，Supp．， 52
Lecanides，V，85， 92
Lccanium aceris，V， 92
LeConte，Dr．J．L．，on the use of mineral poisons as insecticides，VII， 8
lccontei，Callemorpha，III，134，VI，92，Supp．， 55
LeConte＇s Pine Worm．IX， 32
Descriptive，IX， 33
Habits of，IX， 33
Legged Maple Borer，VI， 107
Legislation against injurious insects，VIII， 132 to avoid locust injnry，IX， 111 to create national entomological com－ mission，VIII， 133
Lema trilineata，I．99，II．58，III． 14
Leopard Moth．the Great，IV， 141
Lepidoptera，characteristics of，V， 11
preparing of，for cabinet．T， 38
Lepidosaphes，I，9，Г， 91
leporina，Acronycta，II，121，Supp．， 73
Leptalis，III，161， 165
Leptinotarsa，rIII， 2
Leptus，ГI， 52
americanus，VI． 122
irritans，VI，122，VII， 177
lepusculina，Acronycta，II，121，Supp．， 73
Lesser Apple Leaf－folder，IV，47， 48
lesueuri，Chrysobothris，VII， 71
Letterman，G．W．，ouColoradoPotato beetle，LX， 35
Leucania albilinea，IX，50， 55
comma，VIII， 43
extranea，II，50，VIII， 34
harveyi，IX， 50
impura，ГIII， 38
lithargyria，VIII．38， 43
phragmatidicola，IX， 57
turca，ГIII， 43
unipuncta，I，109，II，5，11，37，55，V， 25 ， VIII，29，24，29，182，IX，47，Snpp．， 76
Leucanice，II，51， 52
lсиса⿱亠䒑𧰨e，Ichneumon，II，53，V III， 54
Exorista，II，50，51，52，III，116，129，IV
108，VIII，53，Supp．， 60
Leucopis，VI， 51
leucoptcra，Ourvirostra，VI， 27
leucopterus，Micropus，II，15，VII，19，Supp．， 58
leucostigma，Orgyia，I， 144
Lewelling，H．，on Apple Curculio，III， 35
Libellula，II， 46
Libellula trimaculata，V， 14
lictor，Erax，II， 124
Lightning－hopper，Frosted，V， 122
luna，Attacus，IV，123， 138
Limacodes，III， 150
scapha， $\mathrm{F}, 126$

Lime, air-slacked, as remedy for Iotato beetle, IV, 14
as remedy for Locusts, VIII, 130
Carbolate of, as remedy for Potato-beetle, IV, 14
Limenitis, III, 168, 169
arthemis, III, 171
bredowii, III, 171
disippus, III, 153, 171, V, 146. Supp., 66
lorquini, III, 171
misippus, III, 167, VI, 145
proserpima, III, 171
sibylla, III, 171
uersult, III, 163, 167, 171
wcidemeyerii, III, 171
limenitidis, Microgaster, III, 158, Supp.,66
Limneria fugitiva, IV, $41, \mathrm{~V}, 133,141$

$$
\text { lophyri, IX, 32, Supp., } 65
$$

Lincecum, Dr. Gideon, on Harlequin Cabbage-bug, IV, 36
Lincoln (Neb.) Jourmal, article from, on Rocky Mountain Locust, V III, 108
linearis, Coreus, II, 113
Phytocoris, II, 113
lincata, Deilephile, III, 140
lineatella, Prodenit, Supp., 56
lineola, Tabanus, II, 128
Lintner, J. A., on cabinet boxes for Lepidoptera, V, 38
on larva of Eudryas unio, VI, 93
on Hog-caterpillar of the rine, II, 72 on sexual characters in buttertlies, III, 103
on stinging larve, $V, 131$
Liparis auriftua, V, 126
List of birds which feed on Canker-worm, TI, 27
Lithacodes fasciola, V, 126
lithargyria, Leucamia, V III, 38, 43
Lithophane, Supp., 75
Little, Jos. T., on White Pive Worm, IX, 30
Little-lined Plant-bug. II, 113
Loafman, Dr. J. M., on Rocky Mountain Locust, IX, 75
Lobesia botrana, Supp., 57
Lobophora, IT, 129
Locust Flights east of the Mississippi, IX, 81
Flights in Illiuois, V III, 151
Mite, VII, 175
The Atlantı Migrators, VII, 169
The Clumsy, VIII, 148
The Colorado, VII, 188
The Differential, VII, 124, 173
The Green-striped, VIII, 149
The Hateful, VII, 188, 190
The Migratory, VII, 133
The Red-legged, VII, 125, 188
The Rocky Mountain, VII, 121, VIII, 57, 1X, 57
The Seventeen-year, VII, 27
The Thirteen- รear, VII, 27
The Two-striped, VII, 173
Locusta erythropus, VII, 126
Locustide, VI, 124, 1.50
Locusts, V, 14, V 1,153
as food for man, VIII, 143

Locusts not a dirine visitation, VIII, 97
vs. ๙rasshoppera, V I, 150,153
Lodi Putato Pest Poison, VIII, 7
Lomechusa, IV. 22
Long, Dr., on remedy for Canker Worm, II, 101
Long, Leri, on Rocky Mountain Locust, VIII, 69, $102, \mathrm{IX}, 71$
Long-horned Beetles, injurious to fruit trees, III, 6 stridulating noise produced by, III, 14
Boring Beetles, larral habits of, II, 91
longifasciclla, Gelechia, Supp., 83
longispinus, Dactylopizes, IV, 70, VI, 63
Long-tailed Ophion, I V, 107, 129, V, 136
lopkyri, Limneria. IX, 32, Supp., 65
Lophyrus, IX, 12
abbotï, IX, 29, 32, Supp., 65
abietis, IX, 33
americanus, IN, 34
compar, IX, 34
fabricii, IX, 34
lccontei, IX, 31, 32
lorquini, Limenitis, III, 171
Loxopezt, Supp., 52
Loxotania rosaceana, III, 6
Lucanus elap?us, V, 145
Lakens, W. E., on Strawberry Leaf-roller, I, 143
luna, Actias, I丁, 123
Attacues, IV, it
Luna Silkworm, IV, 123
larval changes of, IV, 124
lunatus, Cratoparis, III, 10
Lyccenidx, V I, 138
lycaon, Apetura, VI, 136, 146, 148
Pholues, II, 76
Sphinx. II, 76
lycarmm, Agrotis, Supp., 77
Lycorea, III, 103
Lycosa, IX, 98
Lyctus opaculus, IT, 54
Lyda, IX, 10
Lydella doryphorae, I, 111, IV, 6, IX, 40, Supp., 88
Lygces leucopterus, VII, 21
Lygus robinice, V, 154
Lyman, Jos. B., on Cotton Worm, II, 39, 40, Supp., 88
Lymexylon narale, V, 19
Lytta cenea, III, 6
atrutu, I, 98, Supp., 54
cinerca, I, 97, Supp., 54
fabricii, 1, 99
marginata, I, 98, Snpp., 54
murina, I, 98, Supp., 54
vittata, I, 96

I.

Machines for catching Curculio, I, 60, III, 18, V, 25
Colorado Potato-beetle, I, 117, VI, 14, VIII, 4
Macrobasis unicolor, Snpp., 54
Macrocentres delicatus, V,50
Macroductylus subspinosus, V, 108
macrurum, Ophion, IV, 107
maculalis, Desmia, III, 61
maculeta, Hippodтmia. I, 112, II, 25, V II, 39. Supl., i2
Fcepa, suple., 48
maculosa, Dendroice, VI, 27

Maderus ampelopsidis, I, 132
ritis, I, 131, Supp , 71
magnus, Brachypeplus, VIII, 148
Maia Moth, V, 127
Its Eggs, V, 128
Issuing of the motb, $\mathrm{V}, 132$
The larva, $\mathrm{V}, 129$
Larral changes, V, 129
The pupa, V, 131
The sting of the larva, V, 131
Natural enemies, V, 132
maia, Saturnia, IV, 41
Maine Farmer, article from, on Canker Worm, II, 100
mali, Acarus, II, 6
mali, Aphis, II, 6, 10, III, 6
Molobrus, III, 6
malitorana, Tortrix, IV, 47, Supp., 82
malus, Acarus, I, 16
malvarum, Erynnis, VIII, 182
Mamestra, I, 68, III, 123 picta, II, 112
Mandibulz of Hymenoptera, V, 9
Mandrake as remedy for Potato Bugs, IV, 15
Manitoba, Rocky Mountain Locust in, VII, 155, VIII, 89
Manketo Revicw, article from, on Rocky Mountain
Locust, LX, 60
Mann, B. P., on Canker Worm, VI, 28
Mantis carolina, I, 169, III, 68, IX, 98
manticora, Sarcophaya, V II, 180
Many-banded Robber, I, 114, VII, 41
Maple, J. W., on Rocky Mountain Locust, IX, 71
Maple Borer, the Legged, VI, 107
Maple Worm, the Green-striped, $\mathrm{V}, 137$
Euemies of, V, 139
Larral changes of, $V, 138$
Remedies for, $V, 141$
marginata, Lytta, I, 9z, Supp., 54
marginatum, Trochilium, Supp., 72
Margined Blister-beetle, I, 98
marice, Chalcis, IV, 109, 110, 123
Mark, Calvin A., on Rocky Mountain Locust, VIII, 102
Marsupialea, II, 12
Mary Chalcis-Hy, IV, 109, 129
Marcland Yellow-throat, destroying Canker Worm, VI, 27
Masciccra, III, 150, IV, 129
maxillosus, Brenthus, VI, 116
Maxwell, J. H., on Rocky Mountain Locust, IX, 69
Maxwell, J. R., on the use of Paris green, VI, 19
May Apple for Potato Bugs, IV, 15
May Beetle, I, 156, II, 19, IV, 16, VII, 27
Eggs of, $\nabla, 55$
May-tlies, III, 8, V, 143
Maynud, C. J., list of birts destroying Canker Worm, VI, 27
MeAtree, II. II., on hand-picking as remedy for Potato Buga, IV, 11
M.C'artnes, Jno. I., on White Grnb, I, 156

McNatli \rightarrow, Thomas, on Rocky Monntain Locust, 1ス. 72
Mpalwi: W. R., ob Rocky Mountain Locust, IX, 75
Meal心 Grasshopper, V, 123
Meal-worm, II, 10, 11, V L, 118

Mealy Bug, V, 80
Mestrt-flies, II, 19, VII, 27
Meeker, N. C., on Rocky Mountain Locust, VIII, 84
Megarthrus, IV, 22
Megathymus yucce, VIII, 169, 171, 179, IX, 129
Megillu, Supp., 52
melancholica, Euryomia, III, 6
Melanerpus crythrocephalus, V1II, 124
melanoccphala, I'impla, III, 129
Melanoplus, V II, 188
melanosus, Micropus, VII, 22
melanothorax, Doryphora, VIII, 10
Melanotus communis, III, 6 incertus, III, 6
mellonella, Galleria, Supp., 57
melodia, Melospiza, VI, 27
Meloe, VI, 125
Melospiza melodia, VI, 27
melpomene, Heliconius, III, 173
melsheimerï, Perophora, V, 125
Membracidide, a family of Iomoptera, $\nabla, 122$
Membrane-winged Flies, an Order of Insects, $\mathrm{V}, 9$
Meracantha contracta, V I, 118
Merchant, J. W., on O5ster-shell Bark-louse, V, 77
Merchants' Exrhange, (St. Louis) relief committee from, VIII, 93
merdigera, Crioceris, II, 58
Merdigerous habit in insects, II, 58, VI, 128
Mermis, $\mathrm{V}: 49$
Mernmyza americana, I, 159
Merritt's Patent Tree-protector; II, 99
Meske, Otto, on Army Worm, VIII, 44
Mesochorus fuseipennis, VII, 75 vitreus, II, 52, VIII, 53
messoria, Agrotis, Supp., 77
Metagenetic Coccils, V, 84
Metzler, T., on grape culture, VI, 83
Microcentrus retincrvis, VI, 155, 156
Mierogaster, I, 89, II, 75, 102, III, 158, IV, 45, V, 133
VII1, 54, Supp., 66
acronycter, $\mathrm{II}, 120$
gelechice, I, 178, Supp., 66
glomeratus, III, 167
liminitidos, III, 158, Supp., 66
militaris, I, 89, II, 52, VIII, 53, Supp., 52
Hicropteryx, III, 7
pomivorella, III, 7
Micropus leucopterus, II, 15, VII, 19, Supp., 58
var. albivenosus, V II, 22
apterus, VII, 22
basalis, VII, 22
dimidiatus, VII, 22
fcmoratus, V II, 22
filvivenosus, VII, 22
immarginatus, VII, 22
melanosus, V II, 22
nigricornis, VII, 22
refipedis, VII, 22
Migration of butterties, III, 152
locusts, comlitions of, VIII, 112
migratoria, Edipoda, VII, 133, VIII, 145
migratorius, Turdus, VI, 27
Migratory Loenst, VII, 133
milbertii, Proctacanthus, Supp., 88
militeris, Exorista, II, 50, III, 129, IV, 109
Microgaster, I, 89, II, 52, VIII, 53, Supp., 52
militaris, Senomctopia, II, 50
Military Microgaster, II, 52, 103, VIII. 53
Miller, J. B., on Strawherry Crown-borer, III, 42
Miller, Samuel, on grape culture, V I, 76, 84
on Locusts, VIII, 154
Miller, Stephens, on Rocky Mountain Locnst, IX, 92
Miller, W. H, on Rocky Mountain Locust, VIII, 112
Milliken, R. M., on Canker Worm Trap, VI, 25
Milliken, R., on Rocky Mountain Locnst, V II, 150, IX, 65
Minetic analogies, III, 163
resemblance, $V, 147$
Mimicry in animals, III, 159
butterflies, III, 159
Mimus carolinensis, VI, 27, VIII, I24
minimus, Empidonax, VI, 27
Pezomachus, II, 52, V III, 54
ministra, Datena, III, 124, 127, 129, I F, 129
minuta, Eupsalis, VI, 113, 117 Trichogramma, III, 158, Supp., 68
Minnesota, act for the destruction of Locusts, IX, 113
Legislation regarding Locusts, IX, 114
Locust Commission, V III, 83
Locust history in, VIII, 81, IX, 60
Locust invasion of 1876 in, IX, 60
mirabilis, A ntigaster, V'I, 162, Supp., 52
Mirror and Farmer, article from, on Locusts, VII, 172
misella, Cherysobothris, TII, 71
misippus. Limenitis, III, 167, VI, 145
Misnaned Gall-moth, II, 134
Mississippi, Locust fligbts east of the, IX, 81
Missouri, act to encourage the destruction of Locusts, IX, 111
Democrat, article from, on Army Worm, VIII, 50
Legislation regarding Locusts, I, 112
Locusts in, VIII, 89, 90, IX, 66
Silk-growing in, IV, 83
Missouri Bee-killer, II, 121, 122, I T, 21
missouriensis, Asilus, II, 121, 122, IT, 21, Supp., 87
Mitchell, Th., on Army Worm, VIII, 39
Mite, the Locust, VII, 175
The Mussel-sbaped, TII, 106
The Phylloxera, V II, 106
The Silky, VII, 175
Mites, V, 87
transformation of, VI, 52, 53
modesta, Arma, V, 133
Modest Soldier-bing, T, 133
Modrel, M. L.. on Rocky Mountain Locust, IX, 75, 76
molcsta, Myrmica, II, 11, IX, 43
molitor, Tenebrio. II, 9, 10, V I, 118
Mollusea, a branch of the Animal Kingdom, V, 6
Molobrus mali, III, 6
molochinus. Quedius, IV, 21
Molotheres pecoris, VI, 27
Molts, mode of enumerating larval, III, 145
Monolenea semifascin. $V, 126$
Monomera, a division of Heteroptera, $\Gamma, 13$
Montana, Locust history in, TIII, 87, IX, 59

Montgomery, C. W., on Rocky Mountain Locust, IX, 70
mori, Eombyx, IT, 74, 75, 84, 138
Sericaria, IV, 75
Mormon Louse, II. 17
Morris, Rev. Dr. J. G., on Periodical Cicada, IV, 31
Mortality among Grapevines, V, 58
Mosquito, $\mathrm{V}, 13$
Mosquito Hawks destroying Army Worm moths, II, 46
Motbs, a section of Lepidoptera, T, 12
Motsinger, J. L., on Rocky Mountain Locust, IX, 73
Mottled Tortoise-beetle, II, 60, 63
Monlton, J. T., jr., on Chincb Bug, V II, 33
Muench, Hon. F., on Grape mortality, V, 58
Mubleman, J. R., on Chinch Bug, V II, 34
on Fall Web-worm, III, 131
on Mimicry in Insects, III, 160
on Raspberry Root-borer, VI, 11
Mulberry Silkworm, IV, 75, 114, 134, IS, 18
Best food for, IV, 100
Best varieties or races, IV, 91
Choking the chrysalis, IV, 96
Chrysalis of, IV, 87
Cocoon, IV, 87
Cocoonery, IV, 96
Culture in California, IV, 79
Kansas, IV, 82
Missouri, IV, 83
Egg, IV, 86
Egg-laying, IV, 97
Enemies and diseases, IV, 87
How best to rear, IV, 92
Its history in America, I $V, 77$
Its past bistory, IV, 75
Larva, IV, 86
Moth, IV, 87
Natural history; IV, 84
Osage orange as food for, IV, 100
Reeling, IV, 98
Mulsant, E., insect pins used by, V, 35
munda, Coccinella, II, 25, VII, 39, Supp., 52
MIrrgantia, IV, 35
Mungor, H. A., on Tile-horned Prionus, II, 90
murœenula, Agrotis, I, 78
murcimaculata, Celena, Supp., 54
Murgantia histrionica, IV, 35 munda, IV, 35
Muriate of lime, Gould's, as a remedy for Canker Worm, II, 100
murina, Fidia, Supp., 53
Lytta. I. 98, Supp., 54
Murky Ground-beetle, I, 98, 115
Murray, A.. on Protective mimicry, III, 170
Murtfeldt, Miss M. E., on Oviposition of Narrow winged Katy̧did, VI, 165
Musca bifasciuta, V, 140
domestica, II, 10
Muscardine, a disease of Silkworms, IV, 88
Muscide. III. 150, VII, 175
Mussel-shaped Bark-louse, I, 15
Mite, VII, 106
mutiens, Scolytus, V, 105, 107
Myiarchus crinitus, VIII, 124

Myelois convolutella, Sapp., 57
indiginella, IT, 38
suavella, Supp., 79
Mygale, IX, 98
Hentzii, II, 106
Mygatt, E. G., ou Remedirs for Bark-lice, I 18
Myiodioctes canadensis, VI, 27
mylitta, Attacus, IV, 138
Myobia, VI, 52
Myocoryna 10-lineata, VII, 16
Myriapoda, a class of Articulate auimals, V, 6
Myrmica molesta, II, 11, 1X, 43
myron, Darapsa, II, 71
Otus, II, 71
Sphinx, II, 71
Mysia 15-punctata, IT, 18, Supp., 53
Mytilaspis conchiformis, Г, 93
linearis, V, 93
pini, V, 98
pinifolice, V, 97
pomicorticis, , 73,95 , Supp., 85
pomorum, $\mathrm{V}, 93,94$

N.

nana, Trogosita, III, 6
napi, Ccutorhynchus, III, 11
Narrow-winged Katydid, V, 124, VI, 164
Descriptions of adolescent stages, VI, 166
Oviposition, VI, 165
Nashville Warbler destroyiug Cauker Worm, VI, 27
nasicornis, Oryctes, V I, 124
National Agricultural Congress, Address before, VI, 17
National Academy of Sciences, proposed Entomological Commission under, VII, V
Native American Oniou-fly, II, 9
Native Curraut Worm, IX, 23
Descriptive, IX, 23
Its habits, IX, 24
Remedies, IX, 28
Wherein it differs from the imported species, IX, 23
Native home of the Colorado Potato-beetle, Г III, 8 Rocky Mountain Locust, Г Ш, 109
Natural selection, remarks ou, III, 159, IV, 84, V, 83
Naturaliste Canadien, article from, on Polyphemus Silkworm, IV, 128

Nazara, IV, 20

Neat Cucumber Moth, II, 68
Nebraska Bee-killer, I, 168, II, 122, IV, 2
, Locusts in, VIII, $\boldsymbol{7}$, IX, 64
nebris, Gortyna, Supp., 56
nebulella, Acrobasis, IV, 42, Supp., 80
nebulo, Acrobasis, IV, 38, 47, Supp., 79 Phycita, III, 7, IV, 38, 41, Supp., 79
Necrobia ruficollis, VI, 101
Necrophaga, a division of Coleoptera, V, 11
Necrophoridre, III, 14
Needham, H. V., on Chinch Bug ravages, ∇ II, 37
Negro-bug, II, 35
Flea-like, VII, 48
Nematus, Supp., 59
affinis, IX, 7
grossularioe, $\mathrm{IX}, 7$
grossulariatus, IX, 7

Tematns, ribesii, IX, 7
salicis-pomum, IX, 20
trimaculatus, $\mathrm{IX}, 7$
ventricosus, ГI, 43, 149. IX, 7, 10, 21
Nemocera, a sectiou of Diptera, V, 13
Nemorra, V. 140, Supp., 60
nemorum. Hattica, I, 101
Phyllotreta, III, 83
Nemotois scabrosellus, $\mathrm{V}, 160$
nenuphar, Conotrachelus, I, 50, III, 11, 28, 31, 127, Supp., 54, 65, 68
Nerve-winged iusects, $\Gamma, 14$
Neuroptera, characteristics and classificatiou of, V, 14
neustria, Clisiocampa, III, 119
New England Former, article from, on Potato-bug iu Massarhusetts, IV, 8
Grape-root Borer, II, 87
Fork Tribune, article from, on Clover Woru, VI, 104
article from, on Grape Phylloxera, VI, 85, VII, 94
article from, on grape-vine grafting, VII, 109
article from, on Potato-beetle, IX, 35
article from, on remedy for Cauker Worm, II, 101
article trom, ou Rocky Mount. ain Locust, VII, 189, VIII. 156, IX, 64
York Weevil, III, 6, 57
ni, Plusia, II, 112, Supp., is
niger, Gryllus, VI, 152
nigricans, Agrotis, I, 81, 83, 87
nigricornis, Micropus, VII, 22
Eccanthus, Supp., 61
nigripes, Cassida, II, 63, Supp., 53
Nine-spotted Lady-bird, I, 112
Nisoniades juvenalis, III, 155, VIII, 177
Nitchy, F. A., on Fall Army-worm, III, 109
nitela, Gortyna, I, 92, III, 105, VIII, 37, Supp., 56
nitidalis, Phaccllura, II, 7, 64, 68
niveus, (Ecanthus, I, 138, V, 120, Supp., 60, 61
Nuctua clandestina, I, 79, supp., 55
unipuncta, II, 49, VIII, 34
Noctuidee II, 45, III, 136 .
Nomeuclature, II, 71, III, 94, 133, 143, IV,55, V I, 109, 150,153, VII, 16, 89, 143, 187, VIII, 22, 179, IX, 50
Need of popular terms that will not confuse, VI, 153, V II, 187
Law of priority, IV, 55, VII, 143, VIII, 179, IX, 7
Popular vs. scientitic uames, VII, 187
Nonagria, VIII, 38
Northern Army-worm, VIII, 24
Brenthian, VI, 113
Northern Squash-beetle, IV, 18
Nothrus ovivorus, II, 102
novceboracensis, Ithycerus, III, 6, 57
novem-notata, Coccinella, I, 112
Nuxious Iusects, I, 7, IV, 72, T, 46
How to counterwork, V, 23
nucum, Balaninus, III, 11
nuncius, Ciyptus, IV, 110, 111, 123, Supp., 52
Nycteribido, $\mathrm{V}, 14$
Nymphalide, III, 167, V I, 138
Nymphalis disippus, II, 125

Nysius angustatus, V, 113, Supp., 85
destructor, V, 111, 113, VII, 190, Supp., 84, 85 raphankes, $\Gamma, 111$
thymi, V, 113, suplr., 85

(1).

Oak-foeding Tortricid, VI, 103
Oak Phylloxera, the American, VI, 64, VII, 118
Oak-prnner, I, 25
Darisma poweshieh, VIII, 178
Oberea ocellata, I, 178, 179
perspicillata, VI, 111
obesa, Amara, Supp., 52
oblinita, A cronycta, III, 70, 71
oblineatus, Capsus, II, 113, VII, 27
oblonga, Celena, III, 136, Supp., 75
oblonyifolia, Phylloptera, II, 57, Г I, 169
Oblong-winged Katydid, II, 57, V, 123, V I, 169
obscura, Prodenia, III, 117
Chrysobothris, VII, 71
Laphygma, VIII, 49
obscarus, Prionus, I, 127 Tenebrio, II, 9, 11
obsoletus, Bruchus, III, 54, 56, Supp., 70, 71
occidentalis, Acronycta, II, 121, Supp., 73
Caloptemus, VIII, 116
ocellata, Oberea, I, 178, 179
octomaculata, Alypia, I, 136, II, 80, 82, VI, 88, 94, 95
oculana, Grapholitha, III, 6
Ecanthus bipunciatus, Supp., 61
californica, supp., 61
fasciatus, Supp., 60
latipennis, Supp., 60, 61, 62
migricornis, Supp., 61
niveus, I, 138, Г, 120 , supp., 60,61
varicormis, Supp., 61
Gdipoda, TIII, 103, 128
atrox, VII, 124
carolina, VII, 175, 179
differentialis, V, 14
migratoria, VII, 133, VIII, 145
phrenicoptera, VIII, 104
Estrus, III, 150
ovis, I, 161
Eta compta, I, 151, Supp., 58
Eggs of, Supp., 58
Oil of cate as remedy for Grape Phylloxera, IV, 68 olens, Goerius, IT, 21
oleracea, Pieris, II, 105
olinalis, Asopia, YI, 103, 107
olivaceus, Firco, VI, 27, VIII, 125
Omahe Bee, article from, on Rocky Mountain Locust, VIII, 80
Omaha Conference on the Locust subject, IX, 106 Oncideres cingulatus, III, 6
Onion Fly, I, 155
-maggot, $V, 13$
opaculus, Lyctus, IT, 54
Ophion, II, 130, IV, 123
bilineatus, III, 69
lateralis, II, 53
macrurum, IV, 107
purgatus, II, 53, VIII, 54
Ophion, the Long-tailed, 15,129
Ophiusa xylina, II, 40
Orchard Tent-caterpillar, III, 129

Orchelimum, VI, 155
gluberrimum, $\mathrm{V}, 123$, Su!p., 62
Orgyia levcostigma, I, 144
Oributidre, VI, it
orientalis, Blatta, II, 10
orizirora, Dolichomyx, V III, 52
ornata, Strachia, IV, 32
Orocharis saltator, I, 138, V, 119, Supl., 60, 62
Eges of, Supp., 62
Stridulation of, Supp., 62
Ortalis arcuata, II, 9
Orthia, VIII, 17s
Orthoptera, characteristics and classification of, r, 14
Orthosoma cylindricum, I, 124, 127, II, 87
Orthotylus discoidalis, $\mathrm{V}, 154$
Orton, Edward, on Legged Maple-borer, VI, 109
ortonii, Agrotis
Ortyx virginiana, II, 2s, Г II, 41
Oryctes nasicornis, VI, 124
oryzicorus, Dulichonyx, VI, 27, VIII, 52
Oscinis vastator, I, 161
Osborne, Gov., Proclamation of regarding Locust rarages, VII, 149
Osten-Sackenii, Exnrista, II, 51
ostrenformis, Diaspis, Supp., 60
Otiorhynchus sulcatus, III, 11
Otus cnotus, $\Pi, 71$
myron, II, 71
Ovipositor of Eschna, VIII, 36
Agrion, VIII, 36
Army Worm Moth, VIII, 32, 38, 39, 182
Canker-worm Moth, VIII, 37 Fall Army-Worm, VIII, 37 Katydiuls, V, 154, VIII, 37 Plum Curculio, VIII, 36 Unarmed Rustic, VIII, 37 Fucea Moth, VIII, 37
ovis, Estrus, I, 161
ovivorus, Nothrus, II, 102
Owlet Moth, II, 10, 45, 119
Oyster-shell Bark-lonse, I, 7, II, 6, 10, 14, V, 26, 73, Supp., 86

Bibliographical and Descriptive, $V, 91$
Both single and double brooded, $V, 79$
Enemies and parasites, I, 16, V, 87
Food Plants, I, 15, V, 86
Formation of the scale, I, 12, $\nabla, 80$
Its occurrence in Missouri, $V, 74$
Its range south, $V, 77$
Its spread westward, $\nabla, 79$
Male Louse, V, 83
Mode of growth, I, 10
Mode of spreading, $I, 15, \nabla, 85$
Remedies, I, 16, V, 90
Sonthern limits in Missouri, I, 8
True nature of the scale, $\mathrm{V}, 80$
oxycoccana, Teras, Supp., 83
Tortrix, Supp., 83
Oxyptilus, Supp., 58

$$
\mathbf{P}
$$

Pachymerus vulnerator, IV, 28
Pachyrhynchus Schoenherri, III, 57
Packard's "Guide to the Stndy of Insects," $\nabla, 44$

Podisca affusana, supp., 57
Painesville (Ohio) Telegraph, article from, on Po-tato-beetle, V I, 12, 13
Painted Borer, III, 7
Lady, III, 151
Lady-bird, V, 101
Mamestra, II, 113
-winged Digger-wasp, $\nabla, 149$
Paleacrita-A new genns for the Spring Cankerworm, VIII, 13, Supp., 58
Paleacrita vernata, VIII, 13
Pale-thighed Tortoise-beetle, II, 62
Palingenia, IX, 128
pallida, Cassida, II, 62
Palmer, R. B., on Oyster-shell Bark-louse, V, 77
Palson, W. D., on Chinch Bug, VII, 22
paludana, Tortrix, V I, 103
pandorus, Daphne, II, 76
Paniscus geminatus, I, 89
pampinatrix, Choerocampa, II, 71
paphia, Anthercea, IV, 138
Paphia, V, 149, VI, 138
glycerium, II, 125, 127, V, 145
Papilio, II, 117, V, 146
asterias, III, 169
philenor, II, 116, III, 169, Supp., 54
troilus, III. 169
turnus, VI, 145
Papilionider, VI, 138
paradoxus, Rhipiphorus, VI, 125
Parallel Pruner, III, 6
parallelum, Elaphidion, III, 6, IV, 54
Parasa chloris, V, 126
Parasites, artificial propagation of, III, 29, IV, 40, V, 90
artificial introduction of, VII (preface, p. 4)
of Abbot's White Pinc Worm, LX, 31
Archippus Buttertly, III, 149
Army Worm, I, 89, II, 50, VIII, 53
Bag-worm, I, 150
Buck Moth, V, 133
Cabbage Worm, II, 109
Cecropia Worm, IV, 107
Codling Moth, IV, 28, V, 49
Colorado Potato-beetle, I, 111, IX, 40
Common Yellow Bear, III, 69
Cottonwood Dagger, II, 120
Cut-worms, I, 89
Disippus Butterfly, III, 157
Flat-headed Borer, V II, 74
Goatweed Butterfy, V, 149
Gooseberry Span-worm, IX, 6
Grape Curculio, I, 129
Green-striped Maple Worm, V, 139
Hickory Bark-horer, V, 106
Hog-caterpillar of the Vine, II, 73
Imported Currant Worm, IX, 17
Io Moth, V, 136
Katyelid, VI, 162
Lasioptera ritis, V, 118
Luna Silkworm, IV, 125
Oyster-shell Bark-louse, V, 87
Pine-leaf Scale-insect, V, 100
Plum Curculio, III, 24
Polyphemus Silkworm, IV, 129
Promethea Silkworm, IV, 123

Parasites of Rascal Leaf-crumpler, IV, 40
Rocky Mountain Locust, VII, 174, IX, 91
Smeared Dagger, III, 71
Solidago Gall Moth, I, 175
Tawny Emperor Butterfly, VI, 142
Walnut Case-bearer, IV, 43
Wheat-head Army Worm, IX, 55
White Grub, VI, 123
White-lined Morning Sphinx, III, 142
Yama-mai Silkworm, IV, 136
Fucea Borer, VIII, 179
Parasitism, VI, 123
Secondary, VI, 128
Paris Green, antidote for, IV, 13
Contrivance for dusting, IV, 2
Cost of application per acre, VIII, 3
Experiments with, VIII, 6, 7
for Canker Worm, VI, 26
Colorado Potato-beetle, IV, 11, V, 53, VII, 8, VIII, 3
Cotton Worm, VI, 17, VII, 9
Curculio, III, 18
Flat-headed Borer, VII, 78
Locusts, VII, 183
Influence of, on man through the soil or through the plant, VII, 13
Influence of, on the plant, VII, 11
the soil, VII, 11, VIII, 6
Machincs for spraying, VI, 20, VII, 15 , VIII, 4, 5
Patents on, VI, 20
Parker, Dr. S. J., on mortality among grape-rines, V, 59
Parrish, W. S., on Rocky Mountain Locust, IX, 73
Parthenogenesis, IV, 86, V, 85, VI, 35, IX, 18
Parula americana, V1, 27
Parus atricapillus, IV, 107, V I, 27
Pasimachus elongatus, I, 115. VIII, 52, IX, 98 punctulatus, IX, 98
Passalus cornutus, IV, 139, 140, V, 7, 55
distinctus, IV, 141
interruptus, IV, 141
Passalus, the Horned, IV, 139
Patent remedies and nostrums, IV, 15
Patents on insecticides, VI, 21
Pauls, G., on Fall Army.worm, III, 111
on Rocky Mountain Locust, VII, 173
Payne, M. S., on Rocky Mountain Locust, VIII, 68
Payne S. D., on Rocky Mountain Locust, VIII, 126 on Enemies of Rocky Mountain Locust, IX, 96
Pea Bug, II, 11, III, 45
Pea-weevil, III, 44, 55, IX, 43
The female deposits ber eggs on the outside of the pod, III, 46
Remedies, III, 48
Peach Borer, I, 47, II, 11, III, 76, 77, VI, 108
Remedies for, I, 48
Peach-worm, the Blue-spangled, III, 132
Pear Blight, III, 58
Pear-tree Flea-louse, II, 10
Pearl Wood Nymph, II, 80, 83, 84, III, 63, VI, 90
Pébrine, a disease of Silkworms, IV,88, 89, 90, 91
Peck, W. D., on Canker Worm, VII, 89
Pecks' Spray Machine, VIII, 4
pecoris, Molothrus, VI, 27
pectinatus, Rhipiphorus, V I, 125
Pelidnota punctata, III, 77, 78
pellionclla, Tinca, II, 10
Pelopceus, V, 157
I'empelia, IV', 46
grossularice, I, 140, II, 9, Supp., 57
hrummondi, IV, 44, 46, Supp., 80
Pemphigus, III, 96
earyarcaulis, TII, 117
caryovence, VII, 117
imbricator. I, 121
vequbundus, I, 112, 120, V II, 97
vitifolice, I, 13, III, 85, 93, VI, 31, Г II, 94 , 117
Pendleton, E. M., on Rocky Mountain Locnst.IX, 85
Pennsylvania Ground-beetle, I, 59, I $\boldsymbol{I}, 98$
Soldier-beetle, IV, 28
-bug, I, 57
pennsylvenica, Dendroice, V I, 27
Epicauta, Supp., 54
pennsylvanicus, Chauliognathus, I, 57, IV, 28, Supp., 53
Harpalus, I, 59, VIII, 52
Pentamera, a section of Coleoptera, $V, 10$
Pentarthron, Supp., 69
Pentarthrum, Supp., 69
Pentatoma rufipes, IV, 20
Penthina vitivorana, 1, 133, Supp., 57
Pepsis formosa, I1, 106
peregrinum, Acritium, VII, 133, VIII, 144, 145
Perilampus platygaster, II, 87
Perilitus indagator, IV, 43, Supp., 66
Perillus circumcinetus, IV, 19
Periodical Cicada, I, 18, III, 6, IV, 30
Chronological history, with predictions of the future appearance of broods, I, 30
Enemies, I, 26
Injurs, to fruit trees, I, 29
Natural history and transformation, I, 22
Season of appearance and disappearance, I, 22
17 - and 13 -year broods, I, 18
Sting of, I, 26
Two distinct forms, I, 20
periscelidactylus, Pterophorus, I, 137, III, 65, Supp., 58
Peritymbia vitisana, I V, 55, TI, 31, V II, 117
Perkins, Geo. H., on Colorado Potato-beetle, VIII, 2
Perla, V, 143
pernyi, Antheroea, I V, 137
Attacus, IV, 74, 137, 138
Perny's Silkworm, IV, 137
Perophora Melshcimerii, V, 125
perpulchra, Mockeria, II, 53
persimilate, Aeidrelia, VI, 138
Perthostoma, IX, 129
Petersou, J. M., on Rocky Mountain Locust, IX, 73
Pezomachus minimue, II, 52, TIII, 54
Pezotettix, VIII, 115
Phacellura niticlulis, II, 7, 64, 68
Phalona frogiperda, VIII, 48
puenctella, Supp., 58
vemata, VII, so
Phatcuidee, description of a new genns of, VIII, 12
phalanga, Catocala, III, 166
Phalangium dorsatam, I V, 17

Phaneroptera murticauda, V, 124, VI, 164
Phares, Dr. D. L., on Cotton Worm, II, 38, 40, V1, 2\&.
Phelps, Wilson, on Remedy for Chinch Bug, II, 29
Philampelus achemon, II, 74
sutellitia, II, 76
phitenor, Papilio, II, 116, II I, 169, Supp.,54
I'hilenor swallow-tail, II, 116, II I, 169
Philonthus apicalis, IV, 21
Phobetron hyalinuem, V, 126 puthicium, V, 126
phoniccus, Agelaius, VI, 27
phomicopterd, Edipoda, V III, 104
Pholas crantor, II, 74
lycaon, II, 76
Phoxopteris comptana, Supp., 57
Phryganeida, $\Gamma, 10$
Phtheir, VI, 63
Phycis grossultcriella, Supp., 57
Phycita juglandis, Supp., 80
nebulo, III, 7, IV, 38, 41, Supp., 79, 80
rar. nebulclla, IV, 42, Supp., 80
phycitce, Exorista, IV, 40, Supp., 88
Tachina, IV, 40, Supp., 88
Phygadeuon brevis, IV, 28
Phylloptcra oblongifolia, II, 57, V, 123, V I, 169
Phyllotreta nemorum, III, 83
striolata, III, 83
Phylloxera acanthochermes, ГII, 119
balbianii, VII, 91, 97, 90, 119
caryovectulis, V II, 97, 99, 117
earyctolia, IV, 66, V, 70, V I, 45, VII, 117
caryce-fallax, V II, 118
caryce-globuli, V II, 117
carye-gummosa, VII, 118
caryce-ren, V II, 118
carye-scmen, VII, 117
caryo-septa, VII, 118
castanea, VII, 118
coccinea, VII, 119
conica, V II, 118
corticalis, V II, 119
depressa, VII, 118
forcata, VII, 118
gullicola, VI, 30, 33, VII, 93
lichtensteinii, VII, 119
quercus, IV, 66, VI, $30,41,43,68$, VII, 91 , 119, VIII, 158
radieicola, VI, 33, 36, 37, VII, 93
rileyi, IV, 66, VI, 42, 43, 64, 86, VII, 91, 117, 118, VIII, 158
seutifer α, V II, 119
spinosa, VII, 118
vastatrix. III, 85, IV, 55, V, 57, TI, 30. 63,
66, 86, 87, ViI, 91, 117, VIII, 157
vitifolice, II, 27, III, 84, IV, 55
Position of the genus in the system, I1I, 96
Synopsis of the American species of, TII, 117
Phyllosera, American Oak, VI, 64, V II, 99, 118
European Oak, VI, 46, 64
Grape, III, 84, IV $, 55,67, V, 57,63, \mathrm{VI}_{\sim}$ 41,90, V I1I, 157, IX, 43
Phylloxera, Mite, VII, 106
phylloxere, Thrips,, VI, 50
Tyroglyphus, VI, 52, 53, 81

Physonota quinquepenctata, II, 59, Supp., 53 unipunetata, supp., 53
Phyfocoris linearis, II, I13
Phytophaga, a dirisiou of Colcoptera, V, 11
Terebrantine Hymenoptera, V, 10
Phytophagic varieties and species, I, 15f, III, 127
Pickle Woriu, II, 7, 64, 67, 70
picta, Coccinrlla, V, 101, Suppr., 5 -
Harmonia, Supp., 52
Mamestra, 1I, 112
pictus, Clytus, II I, 7, VI, 101
I'ieris, II, 161
brasxicce, IIL, 167
olcracca, L, 105
prototlice, II, 104, IX, 57
rарж, II, 10, 107, III, 167, V, 24, 26, VII, 5
vernalis, IX, 57
Piesma cinerea, II, 32, VII, 47
Pimpla, I, 178, III, 129, IV, 44 annulipes, IV, 43, V, 49 conquisitor, IV, 43 indagatrix, IV, 43 melanocephala, III, 129
Pine-leaf Scale, III, 92, V, 84, 97
Confined to Pines proper, V, 100
Its natural history, V, 98
Natural euemies, V, 100
Remedies, $V, 101$
Two-brooded, V, 99
Pine Worm, Le Conte's, IX, 32
pinifolice, Aspidiotus, III, 92 Mytilaspis, V, 97
pini, Mytilaspis, V, 98
Pioncer Press and Tribune, article from, on Pocky
Mountain Locnst, IX, 61
Pinphila casei, II, 10
Pipiza radicum, I, 121, VI, 52
Pircne, I, 176
pisi, Pruchues, II, 11, III, 44, Supp., 53
pisorum, Bruchus, Supp., 53, 71
Pissodes strobi, III, 60
Placid Soldier-bug, IX, 17
Plant-lice, III, 87, IV, 35, VI, 33
Number of annnal broods of, II, 19, VII, 27
Plattc City Landmark, article from, ou Rocky
Mountain Locust, V III, 74
Platygaster, II, 103
platygaster, Perilampus, II, 87
Platyphyllum concovum, V, 123, 124, VI, 167
Platypsyllus castorinus, V, 16
Platyptilia, Supp., 84
zetterstcdtii, Supp., 84
Platysamia cecropia, IV, 103
Pleasant Hill Revicw, article from ou Rocky Mountain Locust, VIII, 65
Plectrophanes lapponicus, IX, 91
plicata Chlamys, VI, 128
plorabienda, Chrysopa, II, 26, VI, 51, VII, 40
Plum Curculio, I, 50, II, 6, 48, III, 5. 6, 11, 13, 26, 30, 37, 38, 57, 58, 127, V, 26, 47, 106, 121, VI, 9, VII, 29, VIII, 36

Artificial Remedies, I, 60

Hooten's Curculio-catcher, III, 23
Hull's Curculio-catcher, III, 19
Jarring by machinery, III, 18

Plum Curculio-Coutinued.
Keeping it in check by the offer of preunums, III, 17
Natural Remedies, I, 56
Nocturnal rather thau dinenal, III, 14
Paris green as a remedy, III, 18
Porizon Curculio Parasite, III, 28
Remedics, I, 60, III, 41
Sigalphus Curculio Parasite, III, 24
Single-brooded aud hibernates as a beetle, III, 11
The Ransom Chip-trap process, III, 15
Ward's Cureulio-catcher, III, 20
Plum Gouger-Its character, distribution, II, 11, III, 39
Habits and natural history, III, 40
Its time of appearance, III, 40
Often mistaken for the Plum Curculio, III, 40 Remetlies, III, 41
Plum Moth, III, 6, 25, 26, V, 51
Plum-weeril, III, 30,31
Plume, Grape-vine, I, 137, IV, 129
Plusia brassicre. II, 110, 111, Supp., 77, 78
ni, II, 112, Supp., 78
precationis. II, 112
Plutclla cruciferarum, II, 10, IV, 36
Podisus, Supp., 58 placidus, IX, 17
Poeciloptera compta, I, 152
pruinosa, $\Gamma, 122$
Poisonous qualities of Colorado Potato-beetle, VIII, 10
polistiformis, Egcria, I, 127
Polistes rubiginosus, V, 54
Pollen carried in thinder-showers, V, 86
Pollyxcrus cagnurus, VII, 106
Polsou, W. D., on Rocky Mountain Locust, IX, 74
Polygramma, VII, 18
10-lincata, VII, 16
Polymorphism, VI, 43
polyphemus, Attacus, III, 170, IV, 13, 74, 85, 110, 121, 125,138
Tclca, IV, 125
Polyphemus Moth, II, 19, VII, 27
Issuiug of, from cocoon IV, 127
Polyphemus Silkworm, IV, 125
Food-plants, IV, 126
Larval changes, IV, 126
Natural enemies, IV, 126
Natural history, IV, 125
Parasites, IV, 129
Value of silk, IV, 129
Polysphincta bicarinata, III, 71
pometaria, Anisopteryx, II, 97, VI, 29, VII, 80, 83, 86,
VIII, 13, Supp., 56
pomicorticis, Mytilaspis, V, 73, 95, Supp., 85
pomifoliella, Bucculatrix, IV, 49, 51
pomivorella, Micropteryx, III, 7
pomonclla, Carpocapsa, I, 62, 108, II, 10, III, 6, 101, IV, 27
Trypeta, I, 108, III, 6, 91
pomorum, Anthonomus, III, 11
Mytilaspis, $\mathrm{V}, 93,94$
Poplar Dagger, II, 119
Spinner, II, 19, VII, 27

Popular uames, coufuston from improper use of, VII, 187
populi, A cronyctr, II, 119, 120, supp., 72, 74
populnea, Saperda, IV, 2 ,
Porizon conotracheli, III, 28, Supp., 64
Porizon Curculio Parasite, III, 28
Potask, Bichromate of, for Potato-bugs, IV, 14
Potato-bcetle (see Colora lo Potato-beetle).
Potato Bur (see Colorado Potato-bectle). Pest poison, VIlI, 7, IX, 45
Stalk-borer, I, 92
Stalk-weevil, I, 93, III, 60
-worm, I, 95, Г, 125
Potherb Butterfly, II, 105
Potts, R. B., ou Rocky Monntain Locust, IX, 92
Powers, Rev. Grant, on Northern Arms-worm, II, 42
Poweshich, Oarisma, TIII, 1 18
Practical Entomologist, article from. ou Climbing Cut-worms, I, 71
article from, on Harlequin Cabbage Bug. IT, 36
Prairie Furmer, article from, on Ailanthi-culture, IV, 114
article from, on Canker Worm trap, VI, 2.5
articles from, on Chinch Bug, II, 23, 30
article from, on Climbing Cut. worms, I, 69
article from, on Colorado Potatobeetle, I, 110
article from, on Dark-sided Cutworm, I, is
article from, on Food of Periodical Cicada, I, 29
article from, on Hickory Bark. borer, $\mathrm{T}, 105$
article from, on Katydids, VI, 154
article from, on Lesser Leatfolder, IT, 48
article from, on Locust Mite, VII, 177
article from, on Remedy for Po-tato-bcetle, IV, 15, VIII, 3
article from, on Rocky Mountain Locust. TII, 135, 138
Prairie Warbler destroying Canker Worm, VI, 27
Pratt, S. M., on enemies of Rocky Mountain Locust, LX, 93
Prayers to a vert insect injurs, VIII, 96
precationis, Plusia, II, 112
Predictions verified, VII, 3, VIII, 58,163, I84, IN, 57
Preying Mantis, IX, 98
Prionus imbricornis, II, 89, III, 6, 75
laticollis, II, 87, III, 6, 75, Г, 56
obscurus, I, 127
Priority, law of, IV, 55, VII, I43, VIII, I79, IX, 7
Pristiphora, II, 8 grossularixe, IX, 23, 26
Pritchett, H. Carr, on Rocky Mountain Locust, LX, 75
Processionary caterpillar, $\mathrm{V}, 126$
Proclamation of Goveruor Hardin relating to Locusts, VIII, 95

Procris americuna, II, 85
ritis, II, 86
Procris. the Grape-vins, $\Gamma, 134$
Proctacanthus millertii, supp., 88
Proctotripicile, T, 118
Prodenior autumnalis, III, 109, 116, I51, IV, 129, VIII, 48
var. fulvosa, VIII, 49
obscura, VIII, 49
commeline, I, 8s, III, 13, Supp., 56
tarimedia, Supp., 56
linentella, supp., 56
Progress of Economic Entomology, V, 19
Promachus, Suplp., 8 i apivora, IS, 98
bustarilii, II, 122, IV, 21, Supp., 60 fitchëi, supp., 60 vertel,rata, II, 123
promether, ittuctrs, IV, it, 110, I21, 138 Callosamia, IV, 121, Supp, 55
Promethea Silkworm, IV, 121
Foodplants, IV, 123
Larval changes, IF, 121
Natural enemics, IT, 123
Valne of the cocuon, IF, 121
Pronuba, V, 150
yuccasella, Г, I51, 160, VI, 131, VIII, 171, Supp. 58
Chrysalis of, VI, 13 I
Generic characters of, $V, 150$
How the female fertilizes the plant,,$~$, 154
Larra of, V, 155
Range of, $\mathrm{V}, 159$
proserpina, Apatura, VI, 145
Limenitis, III, 171
Protective imitation, ILI, 142
protodice. Pieris, II, 104
Provancher, Abbé, on parasite of Cabbage Worm, II, 110
ou Polyphemus Silkworm, IV, 128
pruinosa, Cicada, I. 27
Pruner, III, 5
prunicida, Anthonomus, III, 39, Supp., 54
prenivora, Semasia, I, 65, III, 6, 25
Pseutohazis eglanterina, V, 126
Psemb-Nenroptera, a division of Neuroptera, V, 14
Pseudo-Tetramera, a section of Coleoptera, $V, 10$
Pseudo-Trimera, a section of Coleoptera, Г, I0
Pseudopontia, VIII, 1:0
psi, Acronycta, II, 121, Suppr., 73
Proci as museum pests, $\Gamma, 41$
Psyche, article from, on Rocky Mountain Locust, VIII, 109
Psychomorpha cpimenis, III, 63, 6t, VI, 87, 88, 90, 95
Psylla pyri, II, 10, 33
Pterognostic variation, $\mathrm{IX}, 2$ 2?
Pterophorus, II, 86
cardui. Supp., 83
carduidactylus., I, 180, III, 67
periscelidactyles, I, 137, III, 65, Supp., 58
Ptinidre, IV, 53
pubescens, Haltica, I. 101
pulchellus, Sphenophorus, III, 60
puticaria, Corimelnena', II, 33, ГL, 48

Pulicider, 「, 15
pullatus, Ichneumon, III, 69
Pullen, B., on Flea-like Negro-bug, II, 34
on remedy for Peach Borer, I, 48, 34
punctata, Hyphantria, Supp., 55
Pelidnota, III, 7̄, 78
punctclla, Phatona, Supp.. 58
punctipes, Euschistus, I, 113, IV, 19, 20, Supp., 58
Pupation of Butterflies, III, 146, IV, 55, VI, 138,
VIII, 179, Supp., 55
purgatus, Ophion, II, 53, V III, 54
Purged Ophion, II, 53, VIII, 54
Porinton, J. A., on Rocky Mountain Locust, IX, 75
Purple Emperor Buttertly, VI, 136
Purple-finch unjustly accused of doing injurs, I, 72 destroying Canker Worms, VI, 27
Purple Grakle destroying Canker Worm, \boldsymbol{V}, 28
purpureus, Carpodacus, VI, 27
pusilla, Rhizoperthe, II, 14
pustulella, Tinea, Supp., 58
pustulosus, Sphemophorus. Supp., 54
Putnam, J. D., on Rocky Mountain Locust, VII, 141
Pyrameis atalanta, III, 167
Pyramidal Grape-vine Worm, III, 72
pyramidea, Amphipyra, III, 73, 74
pyramidoides, A mphipyra, 11I, 72, 74, Supp., 75
Pyranga rubra, VI, $2 \overline{ }$
pyri, Anthonomus, III, 11
Eriosoma, I, 118, III, 5, 95, 96, VI, 37, Supp., 59, 87
Psylle, II, 10, 33
Pyrrharctio, Supp., 55

R.

quadrigibbus, Anthonomus, III, 29, 35
quadri-impressa, Chrysobothris, VII, 71
quadrispinosus, Scolytus, V, 105, 107, Supp., 54
Quail destroying Chinch Bugs, VII, 41
Locust eggs, IX, 91
unjustly accused of being injurious, I, 72
Quedius molochinus, IV, 21
quercina, Lachnostcrna, I, 67, 157, II, 19, VI, 123,
VII, 27, Supp., 53
quercus-aciculata, Cynips, Supp., 59
frondosa (Gall), III, 25
-inanis, Cynips, 1, 14
-spongifica, Cynips, I, 14
quercus, Phylloxcra, IV, 66, VI, 30, 41, 43, 68, ГTI, 91, 119, V III, 158
Quick, T. J., ou Rocky Mountain Locust, IX, 71
Quince Curculio, III, 35
How it differs from the others, III, 35
Its transformatious and habits, III, 37
Remedies, III, 38
quindecim-punctata, Mysia, IT, 18, Supp., 53
quinque-meculata, Sphinx, I, 95
quinquepunctuta, I'hysonota, II, 59, Supp. 53
Quiscalus versicolor, VIII, 124

16.

Radiata, a branch of the animal kinglom, $\nabla, 6$
Radicicola or Lont-inhabiting type of Phylloxera, VI, $36,37,38,66$, VII, 93
radicum, Anthornyia, $\mathrm{IX}, 92$ I'ipizu, I, 121, VI, 52 Rhodites, I, 13
raftlesice, Euschcmon, VIII, 170
Ragan, Z. F., ou Rocky Mountain Locust, V•III, 70, 105
Ralls, Wm. C., on Rocky Mountain Locust, IX, 117
Randolph, T. C., on Clover-hay Worm, VI, 103
Ransom's Chip-trap for Cureulio, III, 15
rapa, P'ieris, II, 10, 107, III, 167, VII, 5
Rapacious Soldier-bug, I, 114
Rape Buttertly, II, 10, 107, V, 24, VII, 5
Raphigaster, IV, 20
Raptateria, a section of Orthoptera, $\nabla, 14$
raptatorius, Reduvius, I, 114, Supp., 58
Rascal Leat-crumpler, IV, 38, 42, 44, VII, 81
Natural euemies of, IV,40
Remedies for, IV, 40
Raspberry Geometer, I, 139
Root-borer, VI, 111
Rathvon, S. S., ou American Bean-weevil, III, 53 on Colorado Potato-beetle, IX, 35
on Periodical Cicada, I, 20, 22, IV, 31
Ravenel, H. W., on Grape Phylloxera, VI, 83, VII, 102, VIII, 164, 165
Raymond, H. C., on Rocky Mountain Locust, IX, 118
Read, M. C., on Grape-vine Plume, III, 67
Rearhorse, I, 169
Reason vs, instinct, $\mathrm{V}, 83,15$.
Reavis, D. B., on Rocky Mountain Locust, IX, 73
rectus, Balaninus, IV, 144
Red Curraut Borer, II, 10
Red-eyed Vireo destroying Canker Worm, VI, 27 Locusts, VIII, 124
Woodpecker destroying Locusts, VIII, 124
-legged Ham-beetle, VI, 96
Locust, VII, 125, 188, VIII, 150
-shouldered Sinoxylon, II, 53, V, 54
-tailed Tachina fly, II, 50, III, 129, VI, 96, VII, 179, VIII, 53
-start destroying Canker Worm, VI, 27
Reduvius, II, 32
raptatorius, I, 114, Supp., 58
Red Weeril, II, 16, IX, 17
Red-winged Blackbird destroying Canker Worm, VI, 27
Chinch Bug, VII, 41
Reed, E. B., experiments with various substances for Potato-bugs, IV, 14
regalis, Citheronia, III, 151, IV, 129, V, 141
Relation of Insects to Agriculture, $\boldsymbol{\Gamma}, 5,18$
Relaxing Insects, Γ, 41
Remedies, V, 25
for Abbot's White Pine Worm, $I X, 32$
Ailanthus Worm, I, 152
Americau Meromfza, I, 161
$A_{\text {pple }}$ Curculio. III, 34
-leaf Bucculatrix, IV, э0
Skeletonizer, IV, 45
-root Plant-louse, I, 123
-tree Teut-caterpillar, III, 120
-twig Borer, IV, 53
Army Worm, II, 53, VIII, 54
Bag-worm, I, 151
Bee-killer, I, 168
Moth, I, 167

Remedies for Blistrr-beetles, I, 99
Bhe Caterpillars of the Vine, II, 84 Boll Worm, III. 10s
Cabbage Plusia, II. 111
Worms, II. 109
Canker Worms, II, 98, V'I, 24, Y'II, 85, VIII, 19
Chinch Bng, II, 28, VII, 31
Clover-hay Wurm. V1, 105
Coulling Moth, I, 65, IV, 23, V, 46, VI, 9
Coloralu Potato-beetle, I, 116, III, 99, IV, 11, 「, 53, 「I, 13, VII, 8, VIII, 3, IX, 45
Corn Worm, III, 108
Cotton Worm, II, 41, VI, 17
Cnt-worms, I, 90
Fall Army Worm, III, 114
Web-worm, III, 132
Flat-headed Borer, I, 47, VII, 76
Flea-like Negro-bug, II, 35
Gooseberry Fruit-worm. I. 141 Span-worm, IX, 6
Grain Brnchus, III. 51
Grape-cane Gall-enrenlio, I, 132 -leaf Folder, III, 62 Phylloxera, III. 89, IV, 68, Y
71, VI, 55, VII, 105
-root Borer, III, 77
-vine Colaspis, III, 84
Fidia, I, 133
Flea-beetle, III, 80
Frnit-worm, I, 135
Plume, I, 138, III, 68
Green-striped Maple Worm, V, 141
Harlequin Cabbage-bng, IT, 38
Hickory Bark borer, V. 107
Imported Currant Worm, IX, 13
J mining Sumach Beetle, V I, 121
Legged Maple Borer, VI, 109
Lesser Apple Leaf-folder: IV, 49
Native Currant Worm, IX, 26
New Grape-root Borer, I, 128, II, 88
Ofster-shell Bark-louse, I, 16, V, 90
Peach Borer, I, 48
Pea-weevil, III, 48
Periodical Cicada, I, 30
Pickle Worm, II, 70
Pine-leaf Scale-insect, $V, 101$
Plum Cnrenlio, I, 60, III, 15, V, 25
Plum Gonger, III, 41
Potato stalk-borer, I, 92 -Weevil, I, 95
Worm, I, 96
Pyramidal Grape-vine Worm, III, 73
Quince Carculio, III, 38
Rascal Leaf-crumpler, IV, 40
Red-legged Ham-heetle, VI, 100
.shouldered Sinoxylon, IV, 54
Rocky Monntain Loenst, YII, 181. VIII, 125, IX, 99, 108
Rose Chafer, V. 110
Round-headed Apple-tree Borer, I, 45
seed-corn Maggot, I, 155
Sheep Bot-fly, I, 163
Smeared Dageer, III, 70
.Strawberry Ciown-borer, III, 43

Remedics for Strawherry Leaf-roller, I, 143
W'mm, 15, 28
Stripud Cincumbur-beetle, II, 66
Tannished Pant-bng, II, 115
T'ent-caterpillar of the Forest, III 128
Tile-hotned Prionus, II, 90
Tobaceo Worm, V, 56
Tortoise-bretles, II, 60
Tree-cricket, I, 139
Wheat-head Army Worm, IX, 54 White Grinls, I, 157
White-marked Tussuck Moth, I, 147 Zebra Caterpillar, II, 113
Remington, M. C., on Clover ILay Worm, VI, 104
renigera, Celona, I, 86, Supp., 56
repanda, Cicindela, VIII, 52
repentis, Agrotis, Supp., 77
Report of Committee on Entomology, read before the Mo. State Iorticnltural Society, II, 5
Retarded development, V, 130, 132
retinervis, Microcentrus, VI, 15.5
Rhipheus, VIII, 170
Rhipiphorus paradoxus, VI, 125
peetinatus var. ventralis, V I, 125
Rhizaphis vastatrix, VI, 31
Rhizoper the pusilla, I I, 14
Rhodites iymota, I, 13
radicum. I. 13
Rhodobrenus, Supp., 54
rhois, Blepharida, I, 100, II, 58, VI, 118
Rhopalocera a section of Lepidoptera, $V, 12$
Rhynchites bacehus, III, 11
betuleti, III, 11
сопісия, III, 11
Rhyparochromus devastator, VII, 22
Rhyssa, VIII, 38
riberii, Aphis, VI, 46
ribis, Aphis. II, 10
Rice Bunting destroying Arms Worm, VIII, 52
Richmond Conservator, article from, on Rocky Mountain Locust, VIII, 75
Richmond Whig, article from, on Apple grape-vine gall, $\Gamma, 115$
ricini, Samia, IV, 112
Riehl, Wrm., on Army Worm, VIII, 39
rileyana, Tortrix, I, 153, Supp., 81
rileyi, Alciodes, III, 71
Erinsoma, supp., 87
Ihylloxera, IV, 66, VI, 42, 43, 64, 86, VII, $91,117,118$, VIII, 158
Ring-banded suldier-bng, IV, 18
Ring-legged Pimpla, V, 49
Roberts, A., on Rucky Monntain Locnst, IX, 117
Robin destroying Canker Worm, VI, 27
robinie, Spermophagus, III. 45
roborana, Spilomota. Supp., 57
Robords, Clias. J., on Focky Momntain Locust, IX, 69
Robson, J.W., on hirds destroying Canker Worms, VI, 27
on Rucky Mountain Locust, IX, 66, 91
on Wheat-head Army Worm, IX, 51
Fiocky Mountain Locust, VII. 121, VIII, 22, 57, IX,

Rocky Mountain Loctust-Continued.
Account of Damage done in Missouri, VIII, 89 Additional Natural Enemies, IX. 91
Animals which destroy the Eggs. IX. 91
Area in which Eges were laid in 1876, IX, 116
Artificial Means of Destroying the Egas, VIII, 125
Bill to provide for investigation of. VIII, 133
Bounties for catching and destroying Locusts, VIII, 138
Changes that followed the Locusts, VIII. 121
Chronological history, VII, 132
Conditions of Migration, VII, 112
which prevent the permanent Settlement of the Species in Missonri, VIII, 113
Contrast between Spring and Fall, during locust injury, VIII, 119
Definition of the Species, VIII, 114
Departing swarms do not return, VIII, 124
Descriptive, VII, 126
Destination of departing Swarms, VIII, 106, IX, 77
Destitation in Missouri in 1875, VIII, 91
Destruction of the unfledged young, VIII, 126, IX, 108
Does the Female lay more than one egg-mass? IX, 85
Direction of flight, IX, 81
Direction in which young Locusts travel, VIII, 101
taken by winged Locusts, VIII, 105, IX, 81
Easily confounded with the Red-Legged Locust, VII, 125
Eastern line reached in 1876, IX, 80
Egg-mass, philosophy of, IX, 87
Eggs, condition of, in winter, IX, 116
description of, IX, 87
how laid, IX, 86
where laid by preference, VII, 123
experiments with, IX, 99
Enemies and parasites, VII, 174, VIII, 124, IX, 91
Exodus of the swarms in 1875, VIII, 104
Experience in the Spring of 1875, VIII, 118
Experiments with the Eggs, and conclusions drawn therefrom, IX, 99, 106
Food-plints, VII, 158, VIII, 121
General outlook in the Spring of 1875 , VIII, 60
Governor's Proclamation, V III, 95
Green variety of, VIII, 117.
Habits of the unfledged Locnsts, VIII, 100
Hatching of Locusts, IX, 89
How the young Locnst escapes from the Egg, IX, 88
How to arert Locust Injuries, VIII, 131
Influence of burying the eggs at different depths, IX, 104
exposure to air on the eggs, IX, 104
freczing and thawing on the eggs. IX, 99
moisture on the exgs, IX, 101 wind in determining the coarse of Locust swarms, IX, 81

Forky Mountain Locust-Coutinued.
Injury from other, non-migratory Locusts, V II, 171
to fruit and frnit trees, V IlI, 121
Invasion of 1873, VII, 141
1874, VII. 143
1876, IX, 59
Legislation, both national and local, VIII, 132
Lessons of the year 1875, VIII, 142
Locusts as food for Man, VIII, 143
Measurements of Caloptenus spretus, VII, 130
Migratory iustinct and great destrnctive
Power belong to bat one species west of the
Mississippi, VII, 124
Native home, VII, 16I, VIII, 109
Natural enemies, VII, 174, VIII, 12t, IX, 91
Natural history, VII, 121, VIII, 97
Not a divine Visitation, VIII, 97
Not led by "Kings" and "Queens," VIII, 103
Omaha Conference, IX, 106
Outlook in Missouri in 1875, VIII, 61
Predictions for 1875, VII, 166
Previous experience in the Spring of 1867, VIII, 57
Prospects in 1877, IX, 121
Rate at which the young travel, VIII, 102
Rate at which the insects spread, IX, 80
Ravages, VII, 156
of migratory Locusts in the Atlantic States, VII, 167
Reports of Correspondents, IX, 69, 117
Source of Locust swarms of 1876, IX, 79
Singgestious, VIII, 140
Time of appearance, VII, 160
Time of learing of the winged inscets, VIII, 104, 125
Unnecessary alarm caused by native Loensts, TIII, 148
Wind, inflnence of, on flight, IX, 87
Roe, J. E., on Rocky Mountain Locust, IX, 119
Fogers, Dan F., on Chinch Bug, II, 23
Rogers, J. R., on A pple-tree Bark-lousc, V, 78
Root-horer of the Grape-vine, I, 124, II, 87, III, 75
Raspberry, VI, 111
Squash, II, 64
Root-borers, III, 6
Root-louse of the Grape-vine. (See Grape Phylloxera.)
Root Plant-louse of the apple tree, I, 118, ІІ, 5. IV, 68,69
Syrphus H5, I, 121
Rope and tin band for Canker Worm, VI, 26, 27
rosaceana, Loxotcenia. III, 6
rose, selandria, II, 19, VII, 27
rosea, Uroplata, III, 6
Rose-hreasted Grosbeck destroying Potato-beetle, V, 54
Rose-bug, III, 6
Rose-bush Saw-Hy, IX, 19
Rose Chafer, V, 108
Hispa, III, 6
Rose Leaf-roller, III, 6
Rosy Dryocampa, V, 139
Round-headed Apple-tree Borer, I, 45, II, 19, IV, 124, V LI, 27

Round-headed A pple-trer Borer-Continued.
Food iplants, I, 43
Natural bistors, I, 43
Remedies, I, 45
Rove-beetle, larra of, I $V, 21$
Rove-beetles, habits of some, VI, 162
Rocall's Paris Green mixture, VI, 21
rubi, Egeria, V1, 113, Supp., 72
Selandria, I, 52
rubicunda, Anisota, V, 140 Dryocampa, III, 123
rulivora, A plodes, I, 139, Supp., 79
rubivoraria, Synchlora, Supp., 79
rubra, Pyranga, VI, 27
ruficapilla, Helminthophaga, V1, 27
ruficollis, Necrobia, VI, 101
rufimanus, Bruchus, III, 56, Supp., 70
rufipedis, Mieropus, V II, 22
rufipes, Corymetes, VI, 101
Pentatoma, IV, 20
rufus, Sigalphus, III, 27, Supp., 68
Rummaging Ground-beetle, II, 103, III, 129
Ruptor ovi, structure in many insect embryos, for bursting the egg-shell, IX, 127
Rural Carolinian, artiele from, on Loenste, VII, 173
Rural New Forker, article from, on A pple-leaf Buceulatrix, IV, 50
artiele from, on trapping Curculio, II I, 16
Rural World, Colman's, artiele from, ou Apple-tree Bark-louse, V, 77
Rural World, article from, ou Fall Army Worm, III, 109
artiele from, on Grape Phylloxera, IV, 55, VI, 84
ruscarius, Elaphrus, VIII, 52
Rust-red Social Wasp, V, 54
Rutbottom, W. F., on Rocky Mountain Locust, IX, 117
ruticilla, Sctophaga, VI, 27

Sacramento Union, artiele from, on Silk Industry, IV, 80
salicis-strobiloides, Gall, VI, 155
saligneana, Euryptychia, II, 134, Supp., 57
saltator, Orocharis, I, 138, V, 119, Supp., 60, 62
Saltatoria, a section of Orthoptera, $\Gamma, 14$
Samia cecropia, IV, 103, Supp., 55
colembia, IV, 107, 111, 128, Supp., 55
cynthia, IV, 112
guerinit, I, 112
ricini, IV, 112
samice, Cryptus, IV, 110, 111. Supp., 52
Sanborn, F. G., on frame for iusect net, V. 31
sanguinca, Cycloneda, Supp., 52
Saperda bivittata, I, 42, II, 19, III, 6, V II, 27, Supp., 53
candida, Supp., 53
discoidca, V, 106
populnea, IV, 22
Sarcophaga, 1I, 110
cturnaria, VII, 180, IX, 95, Supp., 60
var. mantivora, VII, 180
sarracenice, VII, 180, 181, IX, 95, Supp.,

Narracenia Flesh-fly, VII, 181
sarracenio, Sarcophage, V II, 180, 181, 1X, 95, Supp., 60
Satellite Sphinx, II, 76
satcllitice, I'hilampelus, II, 76
Saturniet maia, IV, 41, V, 127
io, V, 133
saucia, Agrotis, I, 74, supp., 55
Sauuders, Wm., Experiments with poisons for Po-tato-beetle, IV, 14
on Crape-seed Maggot, II, 93
on Imported Currant worm, IX, 12, 14
ou Pea-weevil, III, 49
Saunders, W., on Oidium Tuckeri in America, V, 69, 70
Saw-flies, II, 8, V, 9, 10, VIII, 38
Sawrer's Cauker Worm trap, VI, 26
scabiei, Acarus, VI, 61
seabrosellus, Nemotois, V, 160
scabrum, Trombidium, V II, 175
Scale of Bark-lousp, Trne Nature of, $\nabla, 80$
scandens, Agrotis, I, 76, 78, III, 6, Supp., 55
Scarlet Mite, VII, 175
Tauager destroyiug Canker Worm, V1, 27
Scenopinues, V, 8
Schizoneura, Supp., 87
lanigera, Supp., 59
Scheenherri, Pachyrhynchus, III, 57
Sciara, VIII, 23, 24, Supp., 59
Scientific American, artiele from, on Colorado Po-tato-weetle, IX, 35
Scolic, VII, 174
bicinta, VI, 124
Alacifrons, VI, 124
Scolytida, III, 6
scolytivorus, Bracon, V, 106, Supp., 67
Scolytus, III, 6, V, 106
caryce, V, 103, Supp., 54
destructor, V, 104
muticus, V, 105, 107
4-spinosus, $V, 105,107$, Supp., 54
scribonia, Ecpantheria, IV, 141, 143
scrutator, Calosoma, II, 103, III, 129, VIII, 52
scudderiana, Hedya, Supp., 57
Seudder, S. H., on Protective resemblauce in Buttertlies, III, 166
on Rocky Mountain Locust, VIII, 109
on Southern Cabbage Butterfly, II, 104
sculptilis Sphenophorus, Supp., 54
scutcllaris, Anthonomus, Supp., 54
Scutellera, a family of Heteroptera, II, 32, 33, IV, 19, V II, 48
Scymnus, II, 25, 27, VI, 51, VII, 39
cervicalis, I, 122, V, 100
consobrinus, $\mathrm{V}, 100$
terminatus, V, 100
Seabrook, W. B., on Cotton Moth, II, 40
Sedalia Press, artiele from, on White Grub, I, 158
Seed corn maggot, I, 154
Curculio of the Grape, I, 129
Seiurus aurocapillus, VI, 27
Selandria, V, 26 cerasi, II, 18, VII, 27

Selandria rose, II, 19, VII, 27, IX, 19 rubi, I, 52
selene, Attacus, IV, 125
Semasia prunivora, I, 65, III, 6, 25, V, 51
Semiotellus clisiocampa, II I, 120
semisculpta, Ohrysobothris, VII, 71
senatoria, Dryocampa, III, 123, IV, 41
Senometopia bicincta, $\Gamma, 140$
militaris, II, 50
septemdecim, Cicada, I, 18, 19, 20, II, 19, III, 6, VII
27, Snpp., 58, 59
septentrionis, Brenthus, VI, 116, 117
Sericaria mori, IV, 75
sericeum, Trombidium, VII, 175, Supp., 63
sericeus. Asilus, II, 123
Spermophagus robinice, III, 4.5
serratus, Bruchus, III, 56, Snpp., 70
sesustris, A mpeloglypter, Snpp., 71
Baridius, III, 60, Supp., 71
Sctophaga ruticilla, VI, 27
Seventeen-year Locust, II, 19, III, 6, VII, 27
Seventeen and thirteen year broods of the Periodical Cicada, I, 18
Sex, law of, $V, 85$
Sex not affected by food, VIII, 19
Sexed Plylloxera, VIII, 158
Shat-fly, V, 143
Shane, J. B., on Rocky Mountaiu Locust, IX, 118
Shattuck, J. C., on Rocky Mountain Locust, VII, 178
Shaw, G. W., on Soldier Bugs, V, 51
Sheep Bot-Hy, I, 161
-ticks, V, 13
Shepherd, S., on Hickory Bark-borer, V, 105
Shimer, Dr. H., on Chinch Bng, II, 20, 24, 26, 30, VII, 39, 40
Short-winged Ichneumon, IX, 55
Shulz, G. E., on Rocky Mountain Locust, IX, 70
sibylla, Limenitis, III, 171
Sigalphus Curenlio Parasite, III, 25
Sigalphus curculionis, III, 25, 27, Supp., 67
var. rufus, ILI, 27, Supp., 63
signatipes, Ichneumon, III, 69
sugnifer, Cassida, II, 63
Silk-growing in California, IN, 73
Kansas, IF, 82
Missouri, IV, 83
Silkworm, The Ailanthns, IV, 112
American, IV, 104
Cecropia, IV, 103
Lmna, IV, 123
Mulberry, IV, 75
Perny, IV, 137
Polyphemus, IV, 125
Promethea, I $\mathrm{Y}, 121$
Tusseh, IV, 138
Yama-mai, IV, 130
Silkworms, IV, 72
Silky Asilus, II, 123
Silky Mite, VII, 175, IX, 91
Silphe americana, V I, 100
Simmons \& Tillson, on Grape ront Borer, I, 125
Simpson, T. W., on Rocky Mountain Locnst, IX, 75
Sinea diadema, Supp., 58
Sinaxylon basillare, IV, 53, 54, V, 54
Sinoxylon, the Red-shoullerel, IV, 52, 53, 54, V, 54
siro, Tyroglyphes, V I, 52
Sitophilus granarius, II, 10, III, 60
Skimmed Milk as remedy for Gooseberry Spanworm, IX, 6
Skunk destroring Locust eggs, IX, 91
Slug Worm of the Pear, II, 19
Rose, II, 19, VII, 27
Slug-worms, V, 26
Small White Bristly Cut-worm, I, 86
Smeared Dagger, I I I, 70
Smiley, W., ou Rocky Mouutaiu Locust, IX, 70
Smith, H. J., on Green-striper Maple-vorm, V, 137
Smith, Jos., on Suake Worm, VIII, 24
Smith, J. F., on Rocky Monntain Locnst, IX, 68
Smith, J. H., on Rocky Mountain Locust, VIII, 62
Smith, S. I., on oviposition of Conocephalus, VI, 155
Smith, S. S., on Army Worm, VIIL, 39
Smith, T., on seeding of Yuccas, V, 159
Smith, W. A., on Rocky Monntain Locust, IX, 70
Smith, W. R., on Rocky Mountain Locust, VIII, 85 smithii, Oryptus, IV, 111
Snake-worms, VIII, 23, 24
Snapping-beetles, III, 6
Snidow, W. L., on Rocky Momntain Locust, IX, 71
Snout-beetle, II, 92, III, 5, 10, 37, VI, 116
The Imbricated, III, 57
Suow, F. H., on False Chiuch Bng, V, 111
ou Rocky Monntain Locnst, VIII, 77, 114, IX, 93
Snowy Tree-cricket, V, 120
Snyder, C., on Rocky Mountain Locust, VII, 194]
socialis, spizclla, VI, 27
Soda as remedy for Apple-tree Bark-lice, I, 17
Soldier-bng, The Glassy-winged, III, 137
The Spined, I, 77, 89, 113, II, $32,34, \mathrm{IV}$, 19, V, 51, 133, IX, 17
Soldier-bugs as eneunies of Cicada, I, 26 Codling Moth, V, 51
solidaginis, Trypeta, I, 13, 173
Solidago Gall-maker, II, 134
Gall-moth, I, 173, II, 20, 132
Song-sparrow destroying Canker Worm, VI, 27
soror, Chrysobothris, VII, 71
Sorsby, B. A., on attracting Boll-worm Moth by sweets, III, 108
Sounds from insects sometimes inaudible, VI, 152
Southeru Cabhage Bnttertly, II, 104
Cotton Army-worm, II, 49, VIII, 34
Grass-worm, II, 41
Southern Furmer, article from, on Paris Green for Cotton Worm, VI, 19
Span-worms, II, 110
Spanish blister-beetle, $\mathrm{V}, 18$
Spathius trifasciatus, V, 106, Supp., 67
Species, definition of, VI, 143, VII, 115, 179
geographical rauge of, IX, 8 ?
speciosus, Stizus, I, 27, Supp., 52
Speckled cut-worm, I, 84
Spectrum femoratum, VI, 156, V II, 181
Spermophagus robinice, III, 45
Sphecius, Snpp., 52
Sphenophorus pulchellus. III, 60 pustulosus, Supp., 54
sculptilis, Supp., 54
13-penctatus, III, 60, Supp., 54

Sphenophorus truncatus, ПI, 59

$$
z e x, \text { III, } 59, \text { Supp., } 51
$$

Sphinges, $V, 12$
stphingider, III, 123, IV, 86
Sphinux. II, 71, 74, 76
carolina, I, 96, IV. 129
crantor, II, 74
lycaon, II, 76
myron, II, 71
5-maculata. I. 95, V. 125
Sphine moth, II, 78, V. 56, VI. 162
Spiderwort Owlet moth, III, 113
Spilonota roborana, Supp., 57
Spilosoma virginica, III, 68
Spined Soldier-bug, I, 77, 89, 113, II, 32, 34, IV, 19, V, 51, 133, IX, 17
spinosa, Arma, I, 77, 89, 113, II. 32, IV, 19, Snup., 58 Phylloxera, VII, 118
spialis. Trichina, IV, $\mathbf{~ \%}$
Spizella socialis, VI, 27
Spotted Ladsbird, I, 112, II, 25, 27, 36, V. 149, VII, 39 Pelidnota, III, 77
Spray Machine, Peck's, VIII, 4
spretis, Acridium, VII, 128
spretum, Acridizin. VII. 128
spretus, Caloptenus, VII, 121, 128, VIII. 57, 109, 114 Supp., 89, 90
Spring in Europe and America, VI, 151
Spring Canker-worm, VII, 80, VIII, 17, 18 Canker Worm Moth, VIII, 37
Sprinkler for the use of Paris Green Water, VI, 20, VII, 15, VIII, 5
Squash bug, I, 113, II, 31, VII. 46
Borer, II, G4
St. Joseph Herald, article from, on Colorado Pota-to-beetle, III, 97 article from, on Rocky Mount. ain Locust, VIII, 67, 69, 73, 75
St. Lonis Globe-Democrat, articles from, on Rocky Mountain Locust, VIII, 63, 71, 92, 155 Republican, articles from, on Rocky Mountain Locust. VIII, 69, 73, 75, 148 , IS, 73
Stag-beetle, V, 145
Stainton, H. T., on Pronuba yaccaselle, V, 160
Stalk-borer, III, 105, VIIII, 37 of the Potato, I, 92
weeril of the Potato, I. 93
Staphylinidee, VI, 162, VIII, 20, 24
State Unicersity, cabinet for, VII, (preface, p. 5)
Steel-blne Flea-beetle, I, 101, III, 79
Stelle, J. P., on Periodical Cicada, IV, 32
Stenocorus villosus, I, 25
Stenopogon consanguineus, IX, 98
Stenoptycha, Supp., 57
Stevenson, Hagh, on Rocky Monntain Locast, IX. 70
stigma, Dryocampa, III, 123, IV, 41, Г, 141
Sting of the Periodical Cicada, I, 26
Stinging larve, $\mathrm{V}, 125$
Stiretrus fimbriatus, I, 114, II, 34, IV, 20
stirpicola. C'rabro, IX, 95, Supp., 89
Stizus grandis, I, 27, Supp., 52
speciosus, ${ }^{\circledR 1}$ I, 27, Supp., 52
Stomoxys, $\mathbf{V}, 13$
Stone, W. B., on False Chinch Bug. V. 111

Strachiu histrionice, IV*, 35
orneta, IV, 38
Strawberry Crown-boter, III. 42 Leaf-roller, I, 142
Worm, LX, 27
Descriptive, IX. 28
Remedies, IX, 28
Strepsiptera, V, 15
striata. Dendroica, VI, 27
Stridulation of Acrididx, VI, 153
Burying beetles, III, 14
Gryllidx, VI, 154
Horned Passalus, IV, 139
Katydids, III, ${ }^{1} 154$
Lucusts, III, 153
Ecanthus latipennis, Supp., 60
Orocharis saltator, Supp., 62
Plum Curculio, III. 14
Three-lined Leaf-beetle, III. 14
Stringer, J. E., on Rocky Mountain Locust, LX, 71
striolate. Haltica, III, 44
I'hyllotreta, III, 83
Striped Blister-beetle. I, 96, 115 Bug, II, 64, 66
Striped Chrysops, II, 129
Cucumber-heetle, II 64, 65, III, 6
Flea-beetle, III, 44
Squirrel destroying Locust eggs, IX, 91
strobi, Pissodes, III, 60
Strobiloides Gall on Willow, VI, 155
Strong, W. C., on grafting grape-vine, VII, 114
Strongylium tenuicolle, VI, 118
Stroop, L. J., on Archippus Butterfls, III, 151
Structure, adaptation of, to habit, VI, 154
Struggle for existence, VIII, 122
Stylopide, $\nabla, 15$
Stylops, V, 15, VI, i25
suavella, Myelois, IV, 41, Supp., 79
Subangular Ground-beetle, I, 58
subanyulata, Aspidoglossa, I, 58
subcadens, Celuena, Supp., 56
subcostalis, Tylina, III, 136, Supp., 75
subcyaneus, Ichneumon, III, 69
subgothica, Agrotis, I, 81, 83, ILI, 151, Supp., 55, 56
Subimago, Chrysopa issues from cocoon as, I, 57, II. 26

Subjoined Hadena, I, 84
subjuncta. Hadena, I, 84
Submersion as remedy for Chinch Bug, VII, 31
Phylloxera,IV,69, VI. 55
Rocky Mountain Locust, VII, 182
suffusa, Ayrotis, Supp., 55
suilla, Colaspis, III, ®2 2
Suits dne to insects, VI, 96
sulcatus, Otiorhynchus, III, 11
Sulphide of Potassium as remedy for Gooseberry Span-worm, IX, 7
Sulphur as remedy for Phylloxera, IV, 69
Sulphuretted hydrogen as remedy for Phylloxera. IV, 69
Sumach-beetle, The Jumping, VI, 118
Summer Yellow Bird destroying Canker Worm. VI, 28
surinamencis. sulvanus, III, 6
suteralis, Anthonomus, III, 60
Swarming of buttertlies, III, 151
Swectened water for Codling Moth, IV, 27
Sylcanus surinamensis. III, 6
sylvatica, Clisiocampa, II, 7, 37, III, 121, IV, 41, Supp., 55
symphoricarpi, Tortrix, I, 154, Supp., 82
Synchlora, Supp., 79
albolineata, Supp., 79
rubivorana, Supp., 79
Syncmon thercsa, V III, 178
Synopsis of the American species of the genus
Phylloxera, VII, 117
Syrphide, V, 13
Syrphus-Hy, VI, 51
of Root-louse, I, 121
Larva, V, 149, VI, 51
Systochus, Supp., 60

T.

Tabanide, VI, 123
Tabanus atratus, II, 123, 129, 130
bovinus, II, 129
cinctus, II, 128
costalis, II, 128
lineola, II, 123
tabcsecns, Erax, II, 124
tabida, Chrysopa, VII, 106
Tachina, II, 103, VIII, 107
anonyma, IV, 129, V, 133, 139, VII, 178, VIII, 179, IX, 54
archippivora, III, 116, 150, V, 149
auricincta, $\mathrm{V}, 140$
bicineta, $\mathrm{V}, 140$
biffasciata, V, 140
phycitce, IV, 40, Supp., 88
Tachina tyy, II, 109, 110, 120, III, 62, 129, 142, 149, 157, 161, IV, 123, V, 133
The Anonymous, VII, 178
of Army-worm, IV, 109, VIII, 50
of Cecropia Worm, IV, 108
The Red-tailed, VI, 96, VII, 179
Tachinidre, $\mathrm{V}, 13$
Talbot, R. H., on Roek y Mountain Locust, IX, 68 tapetzella, Tinea, II, 10
Tarantula, II, 106
tarda, Tiphia, VI, 126
Tarnished Plant Bug, II, 113, 114, IV, 20
Tawny Emperor, VI, 140
Earlier states, VI, 141, 148
Food-plauts, VI, 141
Parasite, VI, 142
'Taylor, A. S., Locust History in America, V II, 133
Telet polyphemus, IV, 125
Tcicphorus bilineatus, IV, 29, 30
むelifera, Agrotis, I, 80, Supp., 55
Ten-lined Spearman, I, 103
Tencbrio molitor, II, 9, 10, VI, 118, IX, 43 obscurus, II, 9, 11, IX, 43
Tenclorionid Larva, VI, 118
Tent Caterpillar, II, 100, III, 130, 132
Teut Caterpillar of the Apple, II, 7, III, 117
Development, III, 119
Esgs, IUI, 118
Fooil-plants, III, 120
Remedies, III, 120

Teut Caternillar of the Forest, II, 7, 37, III, 120, 121, 134, V, 128, VIII, 23
Is it erer destructive? III, 127
Larral habits of, 1II, 124
Natural history of, III, 121
Remedies for, III, 128
Summary, III, 129
Tenthredinide, V, 10, VI, 70
tenuicolle, Strongylium, VI, 118
Teras oxycoccana, Supp., 83
Terebrantia, a section of Hymenoptera, V, 9
Termes flavipes, IX, 43
frontalis, II, 11
tesselata, Halesidota, LII, 127
Tetracha virginica, I, 115
Tettigonia, I, 171, III, 38
Tettix granulata, VIII, 150
texana, Cassida, Supp., 54
Texas, Locust History in, VIII, 88, IX, 76
Text Books on Entomology, V, 44
textor, Hyphantria, III, 130, 132, Supp., 55
Thecla, VI, 140, VIII, 177
thelxiope, Heliconius, III, 173
Theognis albicinctus, $\Gamma, 154$
phyllopus, V, 154
thercsa, Synemon, V1II, 178
Thersilochus, III, 28, Supp., 65
Thick-legged Buprestian, VII, 72
thuiella, Buceulatrix, IV, 51
Thirteen-spotted Lady-bird, I, 112
Thirteen-year Locust, II, 19, VII, 27
Thistle Plame, I, 180, II, 112
Thomas, Prof. Cyrus, Controversy on habits of Army Worm, II, 47
. Deseription of Red-legged Locust, VII, 126
on Army Worm, FIII, 43, 45
on Colorado Potato-beetle, VILI, 8
on Rocky Mountain Locust, VII, 141, VIII, 115, 153
Thompson, E. A., on remedy for Peach Borer, I, 49
Thompson, Wm., on Rocky Mountain Locast, IX, 118
Thornburg, J. M., on Rocky Mountain Locust, IX, 72
Thornton, Dr. C. W., on Army Worm, III, 111
Thrasher, J., on Rocky Mountain Locust, IX, 74
Three-banded spathius, F, 106
Three-lined Leaf-beetle, I, 99, II, 58, III, 14
Threnodes, VIII, 170
Thripidre, V, 16
Thrips, II, 6, III, 29, Г, 16, 118, VI, 50
phylloxere, VI, 50
Thymele, VIII, 175
thymi, Nysius, $\nabla, 113$, Supp., 85
Thyreus abbotii, II, 78
thyridopterigis, Hemitcles, I, 150, Supp., 65
Thyridopteryx ephemerce formis, I, 147
Thysanoptera, V, 16
tibiale, Trochilium, VI, 113, Supp., 72
Tiger-beetles preving on Locusts, IV, 98
Tiger-moth, IV, 88
The Isabella, IV, 143

Tililen, Josiah, on Rocky Mouutaiu Locust, IX, 72
Tile-horned Prionus, II, 89, 90
Dimorphous male form, II, 90
Food-plante, II, 89, 90
Remedy, II, 91
Titts, R. H., ou parasite of Flat-headed Borer, VII, 74
†inetorium, Trombidium, VII, 175
Tinea, the Cabbage, IV, 36
Tinnea pellionella, II, 10
pustulella, Supp., 58
tapetzella, II, 10
vestianella, II, 10
Tineidce, II, 133
On a new Genus iu, $\nabla, 150$
Tingis pyri, II, 33
Tiphia femorata, VI, 124
inornata, VI, 123, 126
$\operatorname{tarda}, \mathrm{VI}, 126$
transversa, VI, 126
Thip $=l a$, I, 180
Tipulide, II, 132
tipuliformis, Egeria, II, 10
Titmouse, Blackcapped, destrosiug Codling Moth, IT, 28
tirymes, Epargyrius, VIII, 173
Titrcus Skipper, II, 125
Tobacco Worm, counterworking the, V, 56
Tolmerus, IX, 98
Tomato-gall, Grape-vine, $\Gamma, 117$
Tomato-worm, I, 95, IV, 17
Zortoise-beetle, the Black-legged, II, 63
Golden, II, 62
Mottled, II, 63
Pale thighed, II, 62
Tortoise-beetles, I, 100, II, 56, 58, 59, 61
fortrix botrana, Supp., 57
cinderella, IV, 47, Supp., 82
malivorana, IV, 47, Supp., 82
oxycoceana, Supp., 82
puludana, VI, 103
rileyana, I, 153, 154, Supp., 81
symphoriearpi, I, 154, Supp., 82
vaccinivorana, Supp., 82
Townley, John, on Climbing Cut.worms, I, 71 trabeata, Cassida, II, 63
Trabue, A. E., on Arme Worm, II, 44, VIII, 27
Pragocephala viridifaseiata, Г III, 149
Transformation of insects, remarks on, III, 146
iransversa, Tiphia, VI, 126
transversus, Bruehus, Supp., 70
Traps for Canker Worm, VI, 25, 26, VIII, 20, 21
Codling Moth, I, 66, IV, 23, Г, 46
Plum Curculio, III, 15
Treadwell, C. C., on parasite of Rocky Mountain Locust, IN, 93
on Rocky Mountaiu Locust, IX, 63
tredeeim, Cieada, I, 19, II, 19, III, 6, VII, 27, Supp., 58, 39
tredecimpunetata, Hippodamia, I, 112
Tredeeimpunctatus, Sphenophorus, III, 60, Supp., 54
Tree-cricket, I, 138
The Jumping, V, 119 i
The Snowy, V, 120」

Tree-hopper, the Butfalo, V, 121
Tite-hoppers, III, 6
Trivoltin Silkworms, IV, 8.5
trichas, Geothlypis, V I, 126
Trichina spiralis, IV, 70
Triehobaris, supp., 54
Trichodactylus, V II, 106
Trichogramma (?) minuta, III, 158, Supp., 68
Trichogrammidee, V I, 142
Trichoptera, $\Gamma, 16$
trieosa, Agrotis, Supp., 55
tridens, Acronycta, II, 121, Supp., 73
trifasciatus, Spathius, V, 106, Supp., 67
trilineata, Lemn, I, 99, II, 58, III, 14, IV, 8
Trim Ladybird, II, 25, 27, V II, 39
Trimble, Dr., ou Quiuce Curculio, III, 36
Trimera, a division of Heteroptera, $\mathbf{\nabla}, 13$
trinotatus, Baridius, I, 93, III, 60, Supp., 54
Triphlebs, Supp., 58
tristis, Coreus, I, 113, II, 31, V II, 46, Supp., 58
tritici, Diplosis, II, 10
Trochitium, VI, 27
acerni, VI, 108
marginatum, VI, 113, Supp., 72
tibiale, V I, 113, Supp., 72
Trogosita nana, III, 6, V, 51
troilus, Papilio, ILI, 169
Trombidium holosericerm, V II, 175
seabrum, VII, 175
serieerm, V II, 175, IS, 91, Supp., 63
tinctorium, YHI, 175
True, Dr. U. T., ou Locusts, V II, 168
Trough remedy for Cauker Worm, VI, 26
Truland, N. B., on Rocky Mountain Locust, VII, 150
Trumpet-gall, Grape-leaf, Г, 118
truneatus, Sphenophorus, III, 59
Trupanea apivora, I, 168, II, 122, Supp., 60 vertebrata, II, 123, Supp., 87
Trypeta pomonella, I, 108, III, 6, 91 solidaginis, I, 13, 173
Trypoxylon, VI, 162
tuckeri, Oidium, VI, 30, 63, 79, 85
turbatella, Dakruma. Supp., 57
turea, Levcania, Г III, 43
Turdus juseeseens, VI, 27 migratorius, ГI, 27
Turnip Flea-beetle, III, 83
turnus, Papilio, V I, 145
Tusseh Silk-worm, IV, 138
Tussock Moths, II, 15
Tuttle, W. F., ou Rocky Mouutain Locust, IX, 69
Trelve-spotted Diabrotica, II, 66
Twice-stabbed Lady-bird, I, 16, V, 100
Twig-borer, III, 6
Twig.girdler, III, 6
Two-lined Soldier-beetle, IV, 29
Two of our common Butterflies, III, 142
Two-striped Locust, VII, 124, 173, VIII, 150
Potato-beetle, II, 61
Saperda, I, 43, III, 6
Tyloderma fragarice, Supp., 72
Tyroglyphas eehinopur, VII, 106 entomophagus, V I, 52 phylloxere, VI, 52, 53, 81 siro, VI, 52
U.
ulıi, Eriosoma, I, 123, Supp.. 87
Tuadorned Tiphia, V1, 123
Unarmed Rustic, I, 72, III, 114
undecimlineata, Doryphora, VIII, 10
Tni-banded Ichneamon-tly, III, 77
unicolor, Corimelana, II, 35
Macrobasis, Supp., 54
unifasciatorius, Ichneumon, III, 71
unio, Eudryas, I, 136, II, 83, III, 63, Г I, 90, 92, 95
unipuncta, Leucania, I, 109, II, 5, 11, 37, 55, VIII, 22,
24, 29, Supp., 76
Noctua, II, 41
unipunctata, Physonota, Supp., 53
Trania, VIII, 170
Crocerida, $\Gamma, 10$
Croplata rosea, III, 6
Uropoda ainericana, IX, 41 vegetans, IX, 40
Ursula butterty, III, 163
ursula, Limenitis, III, 163, 167, 168, 169. 171
urtica, Vanessa, III, 167
Urticating larræ, $\mathrm{V}, 126$
Useful Labena, VII, 75
Utica (N. Y.) Herald, article from, on Payis Green. VII, 9

V.

vadosus, Epiccerus, III, 58
ragabundus, Pemphigus, I, 112, 120, V II, 97
Tallcy Farmer, article from. ino injury done by Cicadas, I, 29
Van Deman, H. E., on Rocky Mountain Locnst, IX, 65
on Rose Chafer, V, 108
Vanesset antiopa, V, 148
atalanta, V, 148
urtica, III, 167
Vaporer Motbs, II, 15
Variation in locusts, VIII, 155 number of antennal joints, II, 89 wing-venation, IX, 22
varius, Anthribus, III, 10
varicornis, Bruchus, III, 55, 56, Supp., 69, 70, 71 Geanthus, Supp., 61
Variegated Cut-worm, I, 72, II, 50
variolarius, Euschistus, Supp., 58
vastutor, Oscinis, I, 161
vastatrix, Phylloxera, III, 85, IV, 55, VI, 30, 63, 66, 86, 87, VII, 91, 117, VIII, 157 Rhizaphis, VI, 31
Tellcius dilatatus, IV, 22
ventricosur, Nematus, VI, 43, 149, IX, 10
Ter du Coeur, II, 107
Vermes, a section of Segmented Animals, V, 6
vernata, A nisopteryx, I, 109, LI, 94, VI, 28, VII, 80,86 Paleacrita, VIII, 13 Phalana, VII, 80
versicolor, Quiscalus, VIII, 124
Vertebrata, a subkingdom of the_Animal_Kingdom, V, 6
vertebrata, Trupanea, II, 123, Supp., 87
Tespa crabro, IV, 22
maculata, Supp., 48
vulgari8, VI, 125
vcstalis, Callimorpha, III, 133
vestianella, Tinea, II, 10
villosum, Elaphidion, III. 6
Vinegar for Codling Moth, IV, 27
Tine Root-borer, I, 124
violaceus, Corynctes, SI, 101
Fireo olivaceus, V I, 27, V III, 124
Tireo, Red-eyed, VIII, 120
virens, Contopus, VI, 27°
virginiana, Ortyx, II, 28, VII, 41
Virginia Tiger-beetle, I, 115
virginica, spilosoma, III, 68
Tetracha, I, 115
viridascens, Glyphe, II, 53 , VIII, 53
viridifasciata, Tragocephala, VIII, 149
viridis, Callochlora, III, 150
Caloptenus, VIII, 117
viticida, Fidia, I, 132, Supp., 53
viticola, Botrytis, VI, 36
vitifolice, Daktylosphara, I, 13
Pcmphigus, I, 13, III, 83, 93, VI, 31
Phylloxera, II, 27, III, 84, IV, 55
citir, Aphis I, 13
Fidia, Supp., 53
Isosoma, II, 92, 93
Lasioptera, Г, 117
Mfadarus, I, 131, Supp., 71
Procris, II, 86
vitis-coryloides (Gall), V, 116
-pomum (Gall), V, 114
-tomatos (Gall), Г, 117
-viticola (Gall), $\Gamma, 118$
vitisana, Peritymbia, IV, 55, VI, 31
vitisella, Carpocapsa, I, 133
vitivorana, Penthina, I, 133, Supp., 57
vitreus, Mesochorus, II, 52, V III, 53
vitripennis, Capsus. III, 139
Campyloneura, III, 137
vittata, Diabrotica, I, 100, II, 62, 64, III, 6 Lytta, I, 96
vittatus, Chrysops, II, 129
Viviparons nature of Cestrus ocis, I, 164
Vorhees, H., on the use of Paris Green, VI, 14
vulgaris, Vespa, VI, 125
vulncrator, Pachymerus, I下,, 8

W.

Walking-leaves, III, 159
Walking-stick, III, 159, V, 14, VI, 156, VII, 181
Wallace, A. R., on Evolution, III, 172
Wallace, T. D., on Rocky Mountain Locust, IX. 74
Walnut Case-bearer, IV, 42, V, 49
Case of, IV, 42
Natural enemies of, IV, 43
Walnut Tortrix, I, 153
Walsh. B. D., controversy on habits of Army Worm, II, 47
description and habits of larva of Black Breeze-fiy, II, 130, 131
of Corn Sphenophoras III, 59
of Native Currant
Worm, 1X, 26
of Pickle Worm, II, 67
of Red-tailed Tachisa. fly, II, 51

Walsh, B. D., experiments with Curculio-larva, I. 55
on Colorado Potato-beetle, I, 102
on Hellgrammite larve, $\mathrm{V}, 14$
on Native Currant Worm, IX, 25
on Oriposition of Katydids, VI, 154
on Rocky Mountain Locnst, VII, 162
on Thirteen-vear Cicada, Supp., 58
IFalshia amorphella, II, 132, 133
Ward's Curculio-catcher, III, 20
Warblers destroying Canker Worm, VI, 27
Warder, R. H., on mould infesting Cicadas, I, 26
Warrensburg (Mo.) Vews, article from, on Rocky
Mountain Locust, VIII, 108
Water Bugs, a division of Eeteroptera, $\nabla, 1$?
Water-moth, $\Gamma, 16$
Wax-worm, I, 166
Weeping Lacewing, II, 26, VI, 51, VII, 40
weinemeyerii, Limenitis, III, 171
Western Farmer, article fronı, on Birds destroying Canker Worm, VT, 27
Western Rural, articles from, on Colorado Potatobeetle.IV. 6, VIII, 8
article from, on Peach Borer, I, 48 article from, on Rocky Mountain Locust, VII, 135
Western Striped Cnt-worm, I, 81
Wetherell, W. H., on Rocky Mountain Locust, LX, 74
Wheat Cut-worm, I, 87, III, 112
Wheat-Head Army-worm, IX, 50
Descriptive, $1 \mathrm{X}, 55$
Habits and natural history, IS, 5y
Nataral enemies, IX, 54
Remedies, IX, 55
Wheat Midge, II, 10, 13, 16, 70, V, 13, IX, 17
Wheeler, Wm., on Rocky Monntaiu Locnst, V II, 151
White, E. M., on counterworking the Tobacco Worm, V, 56
White, J. D., on Rocky Monntain Locnst, IX, 72.
White, J. K., on Rocky Mountain Locast, VIII, 62, IX, 68
White, J. W. C., on Rocky Mountain Locust, VII, 152
White Ant, II, 11, V, 15, I I , 43
Bark-louse, V, 74
Grab, I, 88, 156, II, 16, 19, III, 31, 78, IV, 17, 35, VII, 27
fungus, I, 158, VI, 123, 125
parasite, VI, 123
Currant Worms, IX, 14
Hellebore as remedy for Currant Worms, IX, 14
-lined Morning Sphinx, III, 140, 141, VIII, 123
Green Larva of, VIII, 122
Black Larva of, VIII, 122
-marked Tnssock-moth, I, 144, VI, 23
-Pine weevil, III, 60
Worm, Abbot's, IX, 29

Le Conte's, IX, 32

winged Crossbill destroying Cauker Worm, VI, 27
Whitely, Jos., on Rocky Morntain Locnst, IX, 71

Whitescarver, C. S.. on Rocky Mountain Locust, IX, 70.
Whitman. A., on Enemies of Rocky Mountain Locnst, IX, 96
Whittemore, O. A., on Rocky Mountain Locust, V II. 154
W-marked Cut-worm, I, 79
Wi elandy, J. F., non-publicatiou of report, VII (preface, p. 5)
Wier, D. B., on remedy for Ronud-healled Appletree Borer, I, 46
Wier, Mrs. H., on trapping Curculio, III, 16
Wier's Apple-worm Trap, IV, 33, V, 46, VI, 10
wilcoxi, Calosoma, VIII, 52
Williams, Prof. A. D., on Rocky Monutaiu Locnst, IX, 65
Willow-apple Saw-fle, IX, 20
Wilsou, R. P. C., ou Rocky Mountain Locust, IX, 75
Wilson, T. W., on Rocky Mountain Locust, IX, 75
Wilson's Thrush destroying Canker Worm, VI, 27
Wings, development of, VL, 40
Winnipeg Standard, article from, on Rocky Mount. ain Locust, IX, 78
Winter-egg of Phylloxera, VI, 42
Wire Worm, II, 16
Wise, Jno. C., on Rocky Mountain Locust, VIII, 82, IX, 93
Witherton, McNeil, on remedy for Canker Worm, II, 101
Wombat, II, 12
Wood Nymph, The Beautiful, II, 83, 84, III, 64, V I, 88, 91, 95
The Pearl, II, 80, 83, 84, III, 63, VI, 90
Woodpecker, Red-headed, destroying locust, VIIT, 124
Woorl Petree destroying Canker Worm, VI, 27
Wooly Aphis, III, 95, IV, 100, I X, 43
Apple-tree louse, I, 118
-bear, IV, 88
Elm-tree louse, I, 123
Plant-lonse, I, 119
Workman, R. A., on Rocky Mountain Locust, VIII, 68. IX, 70

Wratten, G. L., on Grape Phyllozera in California, VI, 82
Wyoming, Locust History in, VIII, 88, IX, 59

K.

Xabea bipunctata, Supp., 61
Ferophylla, III, 94
caryce-semen, $\mathrm{\nabla II}, 117$
Xiphidium, VI, 155
Xyela, LX, 20
Xyleutes, VIII, 175
Xylina, III, 135
bethunei, III, 136, Supp., 75
capax, III, 136, Supp., 75
cinerea, III, 134, V, 125, Supp., 74
cinerosa, III, 136, Snpp., 75
conformis, III, 136, Supp., 75
subcostalis, II, 136, Supp., 75
xylina, Anomis, II, 37, 40, VI, 17, VIII, 23, Supp., 56 Ophiusa, II, 40

1.

yama-maï, Anthercea, IV, 130 Attacus, IV, 74, 130, 138
Tama-maï Silkworm, I Γ, 130
Acclimatization in Europe and America, IV, 130
Cultnre in Tapan, IV, 134
Larval cbanges, IV, 132
Parasite, IV, 136
Value of the cocoon, IV, 133
Fellow Bear, III, 141
Fellow-billed Cockoo destroying Canker Worm, VI, 28
Locusts, VIII, 124
-headed Cutworm, I, 87
-jacket, VI, 125
-tail Moth, $\mathrm{V}, 126$
-tailed Tachina Fl 5, II, 51, VII, 53
Warbler destroying Canker Worm, VI, 27
Foumans, Prof. E. L., on Evolution, III, 174
Young, Waller, on Rocky Moudtain Locnst, VIII, 64
ypsilon, Agrotis, Supp., 55
Yucca, insects affecting, V, 154
Yucca Borer, VIII, 169, IX, 129
Affinities, VUI, 176

Yucea Borer-Continued.
Biological, VIII, 171
Bibliographical, VIII, 173
Descriptite, VIII, 174
Enemies, VIII, 179
It is single-broodeci, IX, 129
It thrices in the latitude of St. Louis, IN. 129
Incea Moth, V, 153, VI, 131, VIII, 37
Chrysalis, VI, 131
How the female fertilizes the plant, $V, 154$
Larra, V, 155
Range, $\mathrm{V}, 159$
Oriposition, VIII, 37
yисссе, Castnia, VIII, 173
Eиdатив, VIII, 173
Megathymus, $\nabla, 129$, VIII, 169, 171, 179
yuccasella, Pronuba, V, 160, VI, 131, VIU, 171
Supp., 58

Z.

zcce, Anthomyia, I, 154, Supp., 89 Sphenophorus, III, 59, Supp., 54
Zebra Caterpillar, II, 112
zetterstedtii, Platyptilia, Supp., 84
Zimb, V, 13
Zophodia concolutella, Supp., 57

LNDEX TO PLANTS AND FOOD-PLANTS.

Abies canadensis, I, 24
Acer saccharinum, IV, 108
Adam's Needle, $\mathrm{V}, 158$
Estivalis Grape, V, 65, 66, V II, 103
cestivalis, Vitis, III, 89, 90, IV, 60, 61, 63, VI, 36, 47, 48 72, 74, 75, 80, VII, 103
Agawam Grape, V, 65
Ailanthus, I, 149. 151, III, 130, IV. 75, 82, 112, 118, 120, VII, 160
Tree, A good word for the, IT, 120
A ilanthus glandulosa, IV, 113.120
alba, Carya, V, 105, VII, 117, 118
Horus, IV, 100
album, Chenopodium, II, 113, VI, 12
Alder, II, 121, III, 80
Ahus ser rulata, III, 80
aloifolia, Fucca, V, 153, VIII, 171, 181, IX, 129
Alton Large Nutmeg Melon. II, 69
Alvey Grape, IV, 63, V, 65, VI, 47, VII, 102
amara, Carya, V, 104, V II, 118
Amaranthus. VПI, 159
blitum, VIII, 61, 119, 121, 122, IX, 122
retroflexus, V, 52, VI, 12
Amber Grape, VI, 47, 48
Ambrosia, Supp., 54
trifida Supp., 56
americana, Prunus, I, 15
American Grape-vines in Europe. IV, 62, $V, 65$, VII, 116, VIII, 167
Grape-vines, classification of, IV, 60, V I, 70
Ivy, II, 74
americanus, Ceanothus, II, 35, VII. 48
A morpha canescens, II, 90
fruticosa, II, 132, T, 136
A mpelopsis, II, 76, VI, 90
quinquefolia. I, 132. II, 74
Anacharis canadensis, II, 11, IX, 43
Andropogon, VI, 155
Angreecuin sesquipedalc, $\mathrm{V}, 153$
angustifolia, Fucca, V, 157, 159, VIII, 169
Apocynuim, III, 144, V III, 119
Apple, I, 7, 29, 42, 46, 47, 53, 62, 63, 70, 71, 77, 78, 80, 89, $108,118,119,126,128,144,146,150$, II, 6,9 , $15,88,89,90,91,95,96,114$, III, $5,11,13,25$, $30,32,33,34,38,57,58,92,102,114,118,120$, $124,125,126,127.132 .135,141$. IV, 22, 25, 29, $39,44,46,47,50,52,104,126,132, ~ \Gamma, 51,74$, $86,93,109,114,120,122,129$, VI, $9,127,158$,
VII, 47, 72, 73, 145, 159, 169, VIII, 19, Supp., 79

Apple, Ben Daris, IV, 45 Beqoni, IV, 52, V, 87 Dwarf, I, 69, 70 Early Harvest, V, 86 Limber Twig, $V, 87$ Lowell, V, 87 Maiden's Blush, $\mathrm{V}, 87$ Northern Spy, V, $8 i$ of Peru, IV, 10 Rambo, V, 86
Ratrles Janet, III, 34
Red Astrachan, V, 86
Red Romanite, $\nabla, 86$
Rome Beauty, I, 71
Soulard, V, 87
Summer Rose, V, 86
Sweet June, V, 75
Tallman's Sweet, III, 35
Wild Crab, IV, 42, V, 87, Supp., 80
Willuw Twig, $\mathrm{V}, 87$
Winesap, IV, 45
Yellow Bellfower, IV, 45
A pricot, I, 30, III, 11, IV, 29, V, 86, VII, 159
Aramon Grape, VII, 111
Arbor vitæ, I, 150, IV, 123, IX, 30
arietinum, Ciccr, III, 105
Aristide oligostachya. VIII, 122
Aristolochia, II, 116, 118
A ristolochia serpentina, II, 116
sipho, II, 116
tomentosa, II, 116
arizonica, Titis, IV, 60, VI, 73, 76
aromatica, Rhus, II, 58, VI, 121, IX, 6
Artemisia, II, 135, Г, 35
campestris, I, 175
Asclepias, II, 58, III, 144, 167, V, 152, VIII, 61, 92, 119
cornuti, III, 144
curassavica, III, 144
phytolaccoides, III, 144
purpurascens, III, 144
tuberosa, III, 144
Ash, III, 126, IV, 123, TII, 72, 160
Black, TII, 160
Mountain, I, $43, \mathrm{~V}, 86$, V II, 72
Asb-leared Spirea, V, 86
Asparagus, II, 113, III, 70
Aster, I, 92, II, 113, 114, III, 105
Astragalus, Supp., 71
Atropa belladonne. IX, 4
aurantiaca, Macluia. IS, 100
aurcum, Ribes, IX, 2
austriaca, Pimus. I. 24, V, 100
Austrian Pine, $\mathrm{V}, 100, \mathrm{IX}, 30,32,33$
avicultre, Polygonum, Supp., 47
Azalea, IV, 126

13.

Balm of Gilead, II, 89, V, 136, VII, 160
Balsam, II, 114, V, 136
Fir, VII, 172, IX, 30
Banyan, III, 5
Baptisia, V, 136
Isarberry, IV, 104, 123
Barley, I, 160, II, 23, III, 112, VII, 27. VIII, 143
Bass-wood, III, 126, IV, 126
batatus, Ipomea, II, 36
Bayberry, IV, 123
Bean, I, 79, II, 14, III, 51, 52, 68, 131, VII, 146, Supp., 69, 70
Early Snap, I, 98
English, I, 98
String, III, 105
Windsor, I, 98, III, 51
Bear grass, $\mathrm{V}, 158$
Beech, I, 121, IV, 124, 132, V II, 72
Beet, II, 113, V, 111, 114, VII, 146, 159, VIII, 23, 143
Belladonna, IV, 10
belladonna, Atropa, IX, 4
Bellflower, IV, 45
Ben Davis Apple, IV, 45
Benoni Apple, IV, 52, V, 87
Bermuda Sweet-potato, II, 61
Bhotan Pine, V, 100
Bignonia radicans, III, 64, VI, 87
Bind-weed, II, 10
Birch, II, 121, IV, $29,123,124,126$, Supp., 73
Bitternut Hickory, V, 104, 105, VII, 97
Bitter-sweet, II, 62
Black Ash, VII, 160
Blackberry, I, 70, 139, IV, 164, Г, 103, 120, VI, 111, 127, VII, 159
Dorehester, VI, 113
Black Cherry, Wild, V, 132, 136
Currant, III, 105, IS, 2
July Grape, VII, 102
gum Elm, V, 78
Hamburg Grape, VI, 76
Henbane, VI, 12
-knot, III, :5
Locust, IV, 82, 142, V, 136, VII, 160
Oak, I, 14, III, 127, V, 132, VI, 115
Prince Grape, VI, 77, 78
Spanish Alabama Grape VII, 107
sweet Grape, VI, 79
Thorn, III, 36
Walnut, III, 125, 127, 131, IV, 82, VII, 160
blitum, A maranthus, VIII, 61, 119, 121, 122, IX, 123
Blueberry, IV, 126
Blue Dyer Grape, VI, 68
Grass, Π I, 44, 54, 55, VIII, 27, 49, 122, 132, IX, 47, Supp., 56
Box Elder, VII, 72, 159
Brazilian Sweet-potato, II, 61
Broom-eorn, V, 40, VII, 146, 159
Buckwheat, I, 79, III, 109, 141, VII, 43, 146, 159
Burdock, II, 10
Bush Grape, IV, 60, VI, 73
Butter-bean, VII, 146
.cup, II, 10
-nut, III, 68, 127, Sapp., 54

C.

Cabbage, I, 79, 83, 84, 156, II, 104, 106, 107, 110, 112, $113,11 \mathrm{i}, 115$, III, 11, IV , 10, 11, 35, 30, V, 111, VI, 155, VII, 47, 159, Supp., 78
californice, Vïtis, IV, 60, VI, 73
campestris, Artemisia. I, 175
Canada Thistle, II, 10
canadense, Erigeron, II, 11, VI, 63, IX, 43
canadensis, Abies, I, 24
Anacharis, I. 11, IX, 43
Cercis. I, 132, IHI, 72, 136, Supp., 75
candicans, Titis, IV, 60, VI, 73, 76
canescens, Amorpha, II. 90
capitatum, Croton, II. 125. V. 147
Carex, VI, 138
carolinense, Solanum. I, 103, 107, 103, II, 105, IV, 10, VIII, 122
Carrot, VII, 146, 159, VIII, 143
Carya alba. V, 105, VII, 117, 118
amara, V, 104, VII, 118
glabra, VII, 99, 117
oliveeformis, V, 105
porcina, V, 105
Castor Bean, IV. 112, VII, 43, 146, 159
Catalpa, I, 71, 150
Catawba Grape, IV, 62, 63, V, 59, 62, 65, 72, 73, VI।
$47,75,79,80,81,83$, VII, 101, 102, 110, 116
Cayenne Pepper, IV, 10
Ceanothus americanus, TI, 35, VII, 48
Cedar, I, 128, II, 91, IV, 51
Red, I, 150, IV, 51, VII, 159, VIII, 119, IX, 30
Celery, VII, 146
Celtis crassifolia, VI. 137
mississippiensis, VI, 137
occidentalis, VI, 137
Cembra Pine, V, 100
Cephalanthus, IV, 123
Cerasus serotina, III, 120
Cercis canadensis, I, 132, III, 72, 136, Supp., 75
Challenge Grape, IV, 63, VI, 47
Chasselas Grape, VII, 102
Cheat, II, 10, VILI, 40, 50
Chenopodirm, Supp., 78
album, II, 113, VI, 12
hybridum, VI, 12
Cherry, I, 53, 77, 150, II, 35, 96, 114, III, 11, 32, 57, $58,120,127,163$, IV $39,41,104, V, 86$, 108, 109. VI, 158, VII, 48, 72, 159. VIII, 19 Supp., 79
Black, V, 132. 136
Mahaleb, VI, 49
Mazzard, VI, 49
Morello, I, 53, VI, 49
Sour, VII, 159
Sweet, VII, 159
Wild, III. 120, IV, 123
Chess, II, 10, 55, VIII. 49
Chestnut, I, 24. II, 121, If. 132
Fiorse, I, 146
Spanish, IV. 56
Chickasaw Plum, 1. 53
Chickory, IV, 112
Chick-pea, III, 105
Chickweed, I, 179
Chinese Yam, VIII, 143
Choke Cherry, IV, 126, V, 136
Chufa, VIII, 143
verdina, Massospora. Supp. 59
Gichorium sativa, I, 79
Ciecr arictinum, III, 105
「inquefoil, III, 82
Tirsium lanceolatum, I, 180, VI, 12
Clara Grape, VI, 79
Clinton Grape, I, 13, 14, 30, 130. 131. II. 86, 92 III. 87 , $89,91,92$, IV, $62,63,64$, V, $63,64,65,66,109, \mathrm{VI}, 36$, $47,48,67,68,73,78,79,80,81,83,84$, VII, 102, 110, 111, 117
Clover, II, 113, III, 11, 83, IV, 143, V, 136, VL, 103, VII, 146, 168, VIII, 49, Supp., 78
Cluster Tomato, $V, 118$
-occifera, Quercus, VII, 96
Cocklebur, I, 92, III, 60, 105
Coftee-pea, III, 105
moloratum, Epilobium, V I, 90
Columbia Pium, I, 53
sommunis, Ricinus, IV, 112
Concord Grape, I, 125, 130, 131, 132, 133, II, 86, III, 72, 87, 92, IV, 62, 63, 63, V, 59, 63, 64, 65, VI, 47, 48, 75, 79, $80,81,83,84,95$, V II $, 102,111,115,117$
(Tonvolvulus, II, 62, III, 68, IV, 136
copallina, Rhus, II, 58, VI, 119
cordeta, Salix, IX, 20
cordifolia, Vitis, III, 87, 88, 89, 90, 91, IV, 60, V, 66, 118, VI, $36,73,74,75,76$, V II, 96
Covdyceps ravenelii, Supp., 53
r'oreopsis, II, 35
Corm, I, 79, 80, 81, 87, 126, 154, 155, 157, 158, II, 16. 23, $27,28,42,43,44,54,55,89$, III, $59,64,104,107$. $108,109,111,112$, V II, $31,38,146,159,172$, VIII, $25,27,49,123,143$, Supp., 56,62
Indian, I, 92, III, 105, V, 40, 123, 136, TII, 169
Cornucopia Grape, IV, 63, VI, 47
cormuti, Asclepias, III, 144
cornutum, Solanum, IV, 10
Sorsican Pine, V, 100
cotinus, Rhus, VI, 119
Cotton, I, 150, II, 38, 41, III, 68, 70, 104, T. 136, VI, 17 , Supp., 56
Cottonwood, I, 24, 178, II. 119. VII, 160, IX, 127
Cow-cockle, II, 10
c'rab-apple, I, 43, 65, III, 25, 30, 31, 40, IV, 39, 42, 52, V, 86, 8_{7}^{7}
Transcendent, I, 15
Crab-grass, ILI, 111
Cranberry, Supp., 82
crassifolia, Celtis, VI, 137
r'atogus, IV,42, Supp., 80
tumentosa, III, 36
Creeper, I. 132
Trumpet, III, 64, VI, 87
Virginia, II, 78, 86, LII, 77, VI, 88
Crepis, Supp., 78
Creveling Grape, I, 72, IV, 63, V, 65, VI, 47, 80
Croton capitatum, II, 125, $\Gamma, 147$ monanthogynum, $\mathrm{V}, 147$
Croton Grape, $\mathrm{V}, 53$
Cucumber, II, 64, 66, 67, 68, 69, 70, III, 111
Cucurbitaceons Fines, II, $6 \ddagger, 66$, VII, 159
Cunaingham Grape, $I V, 62,63, \Gamma, 64,65, \mathrm{VI}, 47,48$, 78,81, VII $, 9^{2}, 111,115,117$, VIII, 167
curassavica, Asclepias, III, 144
Currant, I, $15,70,79,140, \mathrm{II}, 9,96$, III, $68, \mathrm{IT}, 104, \mathrm{~V}$, $51,86,136$, VI, 12, 46,111 , VIII, 121, IX, 1 , $2,3,5,7,25$

Currant, Black. III, 105, IX, 2
Fetid. IX. 2
Goiden, IX, 2
Missouri, IX. 2
Red, II, 8,9, VI, 12, IJ, 2 -Howered. IS, 2
White, IX, 2
(ymoglossum afficinale, $\mathrm{V}, 101$
Cyuthiana Grape, IV, 61, 63, 64, V, 64, 65, VI, 47, 74, VII, 111, 115
Cyperts esculentios. VIIL, 143
Cypress vine. I, 80

D.

Dahlia, I, 92, II, 114, III, 105
Damson, V, 119
Dandelion, IV, 143, Supp., 78
Datura, I, 107, IV, 10
stramonitum, $\bar{\nabla}, 56$
decandra, Plyytolacca, VIII, 122
decapetalus, Helianthess, IV, 142
Delaware Grape, I, 130, II, 92, III, 87 , IV, $63, \mathrm{~V}, 59$,
$63,65,66,111, \nabla I, 47,73,80,81,83,84$, VII, 106, 110, 116
Delphinium, VII, 185
Deverenx Grape, $V, 65$
Diana Grape, IV, 63, V, 59, 65, VI, 47, VII, 96
Dipsacus, IV, 112
discolor, solanum, IV, 10
Dogbane, III, 144, V III, 119
Dog-fennel, II, 10, IV, 15
Dog wood, V, 86, 93, 136
Doolittle Raspberry, VI, 111
Dorchester Blackberry, VI, 113
Dracut Grape, IV, 63
Amber Grape, VI, 47, 48
Dryas octopetala, I, 143
Duane's Early Plum, IV, 1\&2
Duc de Malacotí Grape, IV, 64
Duchesse Pear, III, 36
Dutchman's Pipe, II, 116
Dwarf Apple, I, 69, 70
Pear, I, 128
Sumath, VI, 119

E.

Early Goorlrich Potato, I, 110, III, 101, T, 51
Harvest A pple, V, 86
Rose Potato, IV, 11
Suap Bean, I, 98
Echinospermym strictum, $V, 52$
Egg Plant, I, 103, 108, IV, 10
Elder, III, 100, 101, IV, 104, $V, 40$
Elderberry, IV, 104
eleagnifolium, Solanzm, Supp., 54
Elm, I, 123, 146, II, 95, 96, 98, 121, III, 73, 127, IV, 104, $126,129, \mathrm{~V}, 86,93,94,104,136, \mathrm{VI}, 29$, VII, 83 , 85, 160, VIII, 19, IS, 127
White, I, 123
Elsimboro Grape, IV, 64
Empusa muserp, IV, 88
Enăive, Wild, I, 79, 83
Engelmannia, $\mathrm{F}, 147$
English Gooseberry, IV, 56, V, 70
Hawthorn, $\nabla, 70$
Entoinophila, V, 152
Epilobium coloratum, VI, 90

Eragrostis poceoides, VIII, 122
Erigeron canadense, II, 11, VI. 63, IN. 43
Erysiphe, $\mathrm{V}, 70$
csculentus, Oyperus, VIII, 143
Eucalyptus globulus, V I, 55
Eumelan Grape, V, 65, VII, 101
Eupatorium perfoliutum, V I, 12 scrotinum, I, 152
European Grape, IV, 55, 63, VI, 47, 77
Larch, VII, 172
Rulander Grajuc, VI. 77, 78
cxcelsa, Pinus, V, 100

F.

falcata, Quercus, VIII, 182
False Indigo, II, 132, V, 136
fasciculata, Fernonia, I, 153
Fetid Currant, IX, 2
Field Garlic, II, 10
Figwort family, V II, 14
filamentosa, Fucca, 「, 158, 159, Г ПIF, 171
Fir, IX, 29
Balsam, VII, 172, IX, 30
flaccida, Fucca, V, 159
Flax, II, 42, V II, 42, 159, VIII, 25
foridum, Ribes, IX, 2
Foment Grape, r, 66
Fox Grape, VI, 75, 84
Fox tail Grass, II, 10
Fragrant Sumach, VI, 121, IX, 6
French Hazel, V I, 121
Frost Grape, 1II, 87, 89, 90, IV, 60, VI, 73
fruticosa, Amorpha, II, 132, V, 136
Fungus infesting Cicada, I, 26
White Grub, I, 158, VI, 123, 125
Furze, III, 51

G.

Garden Gooseberry, IX, 2
Garlic, Field, II, 10
Garrigues Grape, VI, 84
Geranium, III, 68
glabra, Carya, VII, 99, 117
Photinia, IV, 132
Rhus, II, 58, VI, 119
Gladiolus, III, 105
glandulosa, Ailanthus, IV, 113, 120
glauca, Tucca, V, 153
globulus, Eucalyptus, V I, 55
gloriosa, Yucea, V, 159, VIII, 171
Goat-weed, II, 125, V, 147
Gethe Grape, IT, 63, V, 62, 64, 65, 66, VI, 47, 80, 81, VII, 96, 111, 116
Golden Chasselas Grape, VI, 77
Clinton Grape, III, 87, V I, 47, 48, 68, TII, 102 Currant, IX, 2
-rod, I, $98,152,173$, II, 134, IV, 28 , Supp., 57 Willow, III, 168
Gooseberry, I, 140, II, 8,9, III, 58,68 , VI, 46 , V III, 121, IX, 1, 2, 3, 5, 6, 8, 26
Gooseberry, English, IV, 56, V, 70
Garden, IX, 2
Honghton's Seedling, 1,140
Shows, IX, 2
Goosefoot, II, 113, VI, 12
Gourd, II, 66

Grape, Agawam, $\overline{\text {, }} 65$
Alrej, I $\mathrm{V}, 63, \mathrm{~V}, 65, \mathrm{VI}, 47, \mathrm{VII}, 102$
Amber, VI, 4ī, 48
Aramon, VII, 111
Black Hamburg, IV, 56, VI. 76
Juls. VII, 102
Prince, VI, 7T, 78
Spanish Alabama, VII, 107
Sweet, VI, 79
Blue Dyer, VI, 68
Bullet, IV, 62, V I, 75
Bush, IV, 60, VI, 73
Catawba, IV, 62, 63, V, 59, 62, 65, 72, 73, V I $47,75,79,80,81,83$, VII, 101, 102, 110, 116
Challenge, IV, 63, VI, 47
Chasselas, IV, 56, V II, 102
Clara, VI, 79
Clinton, I, 13, 14, 30, 130, 131, II, 86, 92, III, 87, 89, 91, 92, IV, 62, 63, 64, V, 63, 64, 65, 66, 109, TI, $36,47,48,67,68,73,78,79,80,81,83$, 84, VII, 102, 110, 111, 117
Concord, I, 125, 130, 131, 132, 133, II, 86, IIT, $72,87,92, \mathrm{IV}, 62,63,65, \mathrm{~V}, 59,63,64,65, \mathrm{VI}$. $47,48,75,79,80,81,83,84,95$, VIL, 102, 111. 115, 117
Cornucopia, IV, 63, VI, 47
Creveling, I, 72, IV, 63, V, 65, VI, 47, 80
Croton, $\mathrm{V}, 58$
Cunningham, IV, 62, 63, V, 64, 65, V I, 47, 48. 78,81, VII, $96,111,115,117$, VIII, 167
C5nthiana, IV, 61, 63 64, V, 64, 65, VI, 47, 74, VII, 111, 115
Delaware, I, 130, II, 92, III, 83, 87, IV, 63, V, $59,63,65,66,111, \mathrm{VI}, 47,73,80,81,83,84$. VII, 106, 110, 116
Devereux, V , 65
Diana, IV, 63, $\upharpoonright, 59,65, ~ V I, ~ 47, ~ V I I . ~ 96 . ~$
Dracut, VI, 47, 48
Amber, IV, 63
Duc de Malacoff, IV, 64
Elsinboro, IV, 64
Eumelan, V, 65, VII, 101
European, IV, 55, 63, VI, 47, 77
Rulander, VI, 77, 78
Foment, $T, 66$
Fox, VI, 75, 84
Frost, III, 87, ع9, 90, IV, 60, VI, 73
Garrigues, TI, 84
Goethe, I V, 63, V, 62, 64, 65, 66. VI, 47, 80, 81 VII, 96, 111, 116
Golden Chasselas, VI, 77
Clinton, III, 87, VI, 47, 48, 68, VI1 102
Hambnrg, V, 59
Hartford, III, 72, IV, 63, VI, 47 Prolific, I, 125, 130, 131, IV, 62. 64. 65, V', 65, VI, 75, 81, VII, 116
Herbemont, $I V^{V}, 61,62,63,64 . V, 63,64,65, V I$ $36,47,48,74,78,80,81$, V II, 102, 109, 111. 115, 117, VIII, 167
Hermann, V, 65, VII, 111
Huntington, 1II, 87
Iona, III, $72, \mathrm{~V}, 59,62,65, \mathrm{VI}, 48,79,80,81,83$. VII, 96, 116
Isabella, I, 130, II, 81, I $\Gamma, 62,63,64, ~ \Gamma, 59$, TI 48, 75, 81, V II, 96. 101, 102

Grape, Israella, III, iथ
Ives, IV. 63, V, 65, TI. 48, 81, 84. VII, 96, 111, 116
Seedling, I, 133, V, 64, V I, 79, s0
Jacques, V, 66, V'li, 107, 117, V'III, 167
Lenoir, I V. 64, V, 66, V'II, 10*, 117
Lindley, V゙, 65
Long, $\mathrm{V}, \mathrm{G} 6$
Longworth's Ohio, VII, 107
Lonisiana, IV, 63, V, 65, VI, 47
Madam Pince, IV, 64
Madeira, V, 63
Malaga, VI, 78
Malvasia. VI, 77
Marion, VI, 47, 48, 68
Martha, IV, 62, 63, VI, 48, VII, 96, 111
Massasoit, V, 65
Maxatawney, IV, 63, 64, V, 65, VI, 48, 80, 81, VII, 96, 116
Merrimac, V, 65
Muscadine, IV, 60, 62, 63, VI, 72
Muscat, VII, 102
Hamburg, $1 \nabla, 64$
Mustang, IV, 60, 62, 64, VI, 73, 76, VIII, 167
North Carolina, III, 72, IV, 63, V, 64, VI, 48, VII, 96, 111
Northern Fox, III, 87, 90, IV , 60, 63, VI, 47, 72, 75, V II, 106
Muscadine, VI, 48, VII, 102
Norton's, V, 65, VI, 78, 84
Catawba, VIII, 96
Virginia. I, 132, IV, 62, 63, 64, VI, 47, 80, 81, VII, 109, 111, 115
Ohio, VII, 107
Othello, IV, 63, VI, 47
Pauline, IV, 64, VII, 102
Post Oak, VI, 79
Rebecca, V, 59, VI, 48
Rent, V, 64, VI, 81, VII, 115
River Bank, IV, 60, 63, V, 116, 117, VI, 36, 47
Riverside, VI, 72
Rogers, I, 130, V, 66
Hybrid, I, 130, V, 117, VI, 80
No. 4, I, 130, II, 92
Rulander, V, 65, VI, 47, 80, VII, 111 Earopean, VI, 77, 78
Salem, V, 65, 66, VI, 48, 79
Sand, IV, 60, VI, 73
Scegety, V, 66
Scuppernong, III, 77, IV, 62, 64, VI, 50, 76, VII, 106
Segar Box, VH, 107
Sonora, IV, 64
Southern Fox, III, 77, I $\Gamma, 60,62,63, ~ V I, ~ 48, ~$ 72, 75
St. Augustine, $\mathrm{V}^{\text {r }}, 63$
Sugar, IV, 61
summer, III, 89, 90, IV, 60, 63, VI, 47, 72
Taylor, I. $30, \mathrm{II}, 86, \mathrm{III}, 87, \mathrm{IV}, 63,64, \mathrm{~V}, 63$, $65,66, \mathrm{VI}, 36,47,48,68,80,95$, VII 102, 115
Bullet, VI, 73
Telegraph, V, 65, VI, 47. VII, 106
Tinto, VI, 36
Tokay, V, 66
Venango, VI, 84

Grape, Virginia Seedling, VI, 61, 74
Walter, V, 59, 62, VI, $=0$
Warren, VII, 102
Wéehawken, $\mathrm{V}, 59$
White Riesling, VII, 102 Scotch Cluster, V I, 77
Wilder, IV, 63, V, 62, 63, VI, 48, 81, VII, 101 102, 111, 116
Winter, IV, 60, MI, 73
York Madeira, IV, 64, V, 64
Grape Mildew, IX, 43

- vine, I, $30,70,72,78, \varepsilon 0,124,128,129,131,132$ $133,136,137,138,180$, II, $71,74,76,78$, $81,82,83,85,86,87,88,89,91,92$, III. $11,61,63,65,68,70,72,75,77,79,81$. 84, 111, 130, 137, 141, I V, 52, 54, 55, V, $54,57,108,112,114,116,117,118,120$, VI, 30, 87, 88, 91, 95, 111, VII, 47, 91 , 146, 159, 172, VIII, 121, 123, 157, Supp., 75
disease, IV, 55, VI, 58, 65
-vines, American, Classification of, VI, 70
in Europe, IV, 62, $\mathrm{V}, 65$, VII, 116, VIII, 167
of the United States, The true, IV, 60, II, 70
rooting of, $V, 65$ Tarieties to graft, VI, 81
use as stock in grafting VII, 115
Green Citron Melon, II, 69
Greengage Plum, I, 140
grossularia, Ribes, IX, 2
Ground-cherry, I, 107, IV, 10
Gympson-weed, I, 107

Hackberry, V, 119, VI, 137
Hackmatack, VII, 169
Halesia, IV, 123
Hamamelis, III, 1:0
Hamburg Grape, $\Gamma, 59$
Hard Maple, III, 126, Supp., 55
Harrison Potato, I, 110
Hartford Grape, III, 72, IV, 63, VI, 47
Prolific Grape, I, 125, 130, 131, IV, 62, 64 65, V, 65, VI, 75, 81, VII, 116
Haw, I, 108, III, 25, 32, 35, 38, 92, V, 51
Hawthoin, I, 43, III, 36 English, $\mathrm{V}, 70$
Hazel, III, 11, 37, 75, IV, 104, 126, V, 132
French, VI, 121
Heart Cherry, VIII, 121
-shaped Willow, IX, 20
Hedge-mustard, VI, 12
Helianthus, VII, 159, Supp., 53
decapetalus, IV, 142
petiolaris, V, 52
tuberosus, VIII, 143
Hellebore, White, IS, 13
Hemp, III, 105, VII, 42, 146
Henbane, IV, 10
Herbemont Grape, $\mathbf{I V}, 61,62,63,64, \mathrm{~V}, 63,64,65$. T I. $36,47,48,74,78,80,81$, VII, 102, 109, 111, 115, 117
TIII, 167
Herds-grass, VII, 16e

ITermann Grape, V, 63, V II, 111
ILibiscus militaris, VI, 92
Hickory, I, 126, 153, 154, III, 37, 124, 126, 127, 131, 135, IV, 42, 43, 52. 54. 104, 124, 126, 140, V, 104, 119, VI I,64, 101, VII, 160, Supp., 81
Bitternut, V, 104, 105, VII. 97
Pecan, V, 105
Pignut, V, 105
Shagbark, II, 33, IV, 54
Shellbark, IV, 66, V, 103, 105
\#ouey-locust, I, 98,150, III. 45, IV, 104, 126, V II, 159 -suckle, II, 113
Hop-plantain, III, 131
-vine, $\overline{\text { V }}, 136$
Horse Chestnat, I, 146 Gentian, III, 134
nettle, I, 103, 104, 107, 108, I ∇, 10 Weed, II, 11, IX, 43
Houghton's Seedling Gooseberry, I, 140
Hound's-tongue, $V, 101$
humilis, Salix, V, 132
IIungarian Grass, VII, 27, 28, VIII, 29, 39
Huntington Grape, III, 87
hybridum, Chenopodium, VI, 12
hydropiper, Polygonum, III, 70, VI, 12
Hyoscyamus, IV, 10
niger, VI, 12

I.

incana, Quercus, IV, 114
Indian Corn. (See Corn.)
Iudigo, V, 136
False, II, 132, V, 136
infectoria, Quercus, V, 18
Iona Grape, III, 72, $\boldsymbol{\Gamma}, 59,62,65, \mathrm{VI}, 48,79,80,81,83$, VII, 96, 116
Iротеа, LII, 45
batatus, II, 56
Irish Potato. (See Potato.)
Irouweed, V, 136
Isabella Grape, I, 130, II, 81, III, 72, IV, 62, 63, 64, V, 59, VI, 48, 75, 81, VII, 96, 101, 102
Israella Grape, III, 72
Ives Grape, IV, 63, V, 65, VI, 48, 81, 84, VII, 96, 111, 116
Seedling Grape, I, 133, V, 64, VI, 79,80
Ivy, Poison, VI, 121
J.

Jamestown Weed, I, 107, II, 10, V, 56
Japan Varnish tree, IV, 120
Jaques Grape, V, 66, VII, 107, 117, VLI, 167
Jerusalem Artichoke, VIII, 143
jujuba, Rhamnus, IV, 138
Jujube, V, 18
June-berry, I, 43
Juniperus virginiana, I, 24
K.

King of the Earlies Potato, IV, 11
Kuotweed, Sapp., 47
Kolrabi, VII, 159
Kunogi, IV, 130, 134, 136
L.

2abrusca, Vitis, III, 87, 89, 90, IV, 60, 63, V, 60, 65, 66, 118, VI, 36, 47, 48, 71, 72, 74, 75, 76, VII, 103

Laburnum, IV, 118
Lamb's quarter, II, 10, 113, V I, 12
lanceolatum, Cirsirm, I, 180, VI, 12
Larch, European, VII, 172
laricio, Pinus, V, 100
Lathyrus, III, 52
Laurel, V, 33
-cherry, $\mathrm{F}, 33$
-leaved oak, IT, 134
Lawrence Pear, III, 36
Lenoir Grape, IV, 64, Г, 66, VII, 108, 117
Lettuce, IV, 100, 112, V I, 158
Lilac, III, 65, IV, 104, 123, V II, 159
Persian, I, 15, V, 70, 86, 127
Lima Bean, V II, 172
Limber Twig Apple, V, 87
lincecumii, Vitis, VI, 74
Linden, I, 150, V, 93, VII, 72
Lindera, II, 121, IV, 123
Lindley Grape, V, 65
Liquidambar, IV, 123
Liriodendron, IV, 123 tulipifera, Supp., 55
Live-oak, IV, 129
Locust, I, 24
Black, IV, 82, 142, V, 136, V II, 160
Honey, I, 98, 150, III, 45, IV, 104, 126, VII, 159
Lombardy Poplar, I, 150, 157, II, 89, VII, 160
Long Grape, V, 66
Longworth's Ohio Grape, VII, 107
Louisiana Grape, IV, 63, V, 65, VI, 47
Lowell Apple, $V, 87$
Lucern, III, 83, 105
Lycopersicum, IV, 10

1.

Maclura aurantiaca, IV, 100
Madam Pince Grape, IV, 64
Madeira Grape, V, 63
Madia sativa, VI, 55
Mahaleb Cherry, VI, 49
Maiden's Blush Apple, V, 87
Malaga Grape, VI, 78
Mallow, VI, 89
Malva, VI, 89
sylvestris, V III, 182
Malvasia Grape, VI, 77
Mandrake, IV, 15
Mangel wurzel, VIII, 143
Maple, I, 47, 146, 150, II, 121, IV, 104, 123, 126, VI, 107 111, VII, 160
Hard, III, 126, Supp., 55
Silver, I, 150, V, 137
Soft, I, 47, 150, IV, 42, V, 120, 137, VI, 108, Supp., 55, 62, 74
Mare's Tail, II, 11
Marigold, II, 114
Marion Grape, V I, 47, 48, 68
Martha Grape, IV, 62, 63, V I, 48, VII, 96, 111
Maruta, V III, 100
Massospora cicadina, Supp., 59
Massasoit Grape, V, 65
Maxatawnes Grape, IV, 63, 64, V, 65, VI, 48, 80, 81, VII, 96, 116
May Apple, IV, 15
-weed, II, 10

Mazzard Cherry, VI, 49
Meadow-sweet, III, 51
media, Stellaria, I, 179
Medlar, V, 86
Neapolitan, IV, 132
Melon, II, 64, 66, 69, 70
Alton Large Nutmeg, II, 69 Green Citron, II, 69
Merrimac Grape, V', 65
Mignonette, II, 113
militaris, Hiviscus, VI, 92
Milkweed, I, 139, II, 58, III. 133, 144, 168, V III, 61. 92, 119
Miner Plum, I, 53
mississippiensis, Celtis, VI, 137
Missouri Cnrrant, IX, 2
missouriensis, Solidago, I, 174
mitis, Pinus, V, 100
monanthogynuem, Croton, V, 147
monilifera, Populus, II, 119
monoica, Strombocarpa, I, 65
monticola, Titis, VI, 57, 74
Morello Cherry, I, 53, VI, 49
moretti, Morus, IV, 100
Morning Glory, I, 100, II, 62
Morus alba, IV, 100
moretti, IV, 100
multicaulis, IV, 80,100
rubra, IV, 100
Mountain Ash, I, 43, V, 86, VII, 72
Mulberry, IV, 74, 75, 76, 79, 82,100
Red, IV, 100 White, I, 72. 73
Mullein, II, 10, V, 35, V II, 14
multicaulis, Morus, I Y, 80, 100
Muscardine Grape, IV, $60,62,63, \mathrm{VL}, 72$
musce, Empusa, IV, \&
Muscardine, IV, 88, 89, 91, 144
Muscat Grape, VII, 103 Hamburg Grape, IT, 64
Mustang Grape, IV, 60, 62, 64, VI, 73, 76, V III, 167
mustangensis, Vitis, IV, 62, ГI, 76
Mustard, I V, 36, V, 112
Hedge, VI, 12
Myrica, IV, 123

N.

Nansemond Sweet-potato, II, 61
Neapolitan Medlar, I V, 132
Neck-weed, II, 35, VII, 48
Nectarine, III, 40
nemoralis, Solidago, I, 173
Nettle, II, 105, IV, 10, VIII, 122
Horse, I, 103, 104, 107, 108, IV, 10
New Jersey Tea-plant, II, 35, VII, 4ε
Nieandra, IV, 10
Nicotiana, IV, 10
niger, Hyoscyamus, TI, 12
Nightshade, IV, 10, VI, 12
nigrum, Rizes, IX, 2
Solanum, VI, 12
North Carolina Grape, III, 72, IV, 63, $\nabla, 64$, VI, 48. VII, 96, 111
Northern Fox Grape, III, 87, 90, IV, 60, 63, VI, 47, 72, 75, VII, 106
Muscadine Grape, VI, 48, VII, 102
Spy Apple, $\mathrm{F}, 8 \mathrm{t}$

Norton's Grape, V, 65, V I, 78, 84, VII. 96
Virginia Grape, I, 132, IV, 62, 63, 64, V' I 47, 80, 81, VII, 109, 111, 115
Norway Spruce, I. 150, VII, 172, VIII, 119, IX: 30 novaboracensis. Vemonia, VIII, 119

©.

Oak, I, 47, 126, 128, 139, 146, II, 91, III, 73, $94,124,125$, $126,127,131,134,138$, IV, 45, 52, 114, 126, 137. 140, V, 18, 126, 127, 132, 139, VI, 103, 113, 12 \%. 128, 158, 166, VII, 72, ViII, 23, IX, 52
Black, I, 14, V, 132, VI, 115
Chermes, VII, 96
Laurel-leaved, IV', 134
Live, IV, 129
Pin, I, 157
Post, I, 157, IV, 42, 66, 134, Y, 132. VI, 64, 115 VII, 97
Red, I, 14, V, 132, VI, 115
White, VI. 64, 115
Oat, I, 88, II , 16, 44, 54, III, 111, 112, 115, VI. 12, V II 38, 146, VIII, 27. 49, 119
occidentalis, Celtis, VI, 137
Thuja, I. 24
octopetala, Dryas, I, 143
offcinale, Sisymbrium, VI, 12
Ohio Grape, VII, 107
Oidium tuckeri, V, 57, 70, VI, 30, 63, 79, 85, IX, 43
Proof of its occurrence in dmer ica, $\nabla, 70$
oligostachya, A ristida, VIII, 122
oliveeformis, Carya, V, 105
Onion, II, 9. VII, 159, 169, VIII, 49
O sage Orange, I, 126, 150, H, 89, III, 121, IV, 75,76
100, VII, 159, IX, 95, Supp., 89
Othello Grape, I V, 63, VI, 67
Ox-eye Daisy, II, 10

P.

Panicum sanguinale. VIII, 122
Parsnip, VII, 146, VIII, 119, 143
Pauline Grape, IV, 64, VII, 102
Pea, II, 14, 42. III, 44, 50, 68, 105, 107, VIII. 25, 110
Chick, III, 105
Coffee, III, 105
Peach, I, 47, 50, 77, II, 15, III, 15, 27, 30, 34, 38, 40.57 $1<3,105,114,120,127,132,134$, IV, 22, 29, 40 $52,82, ~ \nabla, 108,120,127,129, ~ V I, 112$, VII, 72. 146, 159, VIII, 19, Supp., 75
-blow Potato, I, $99,98,99$, III, 101
Rot, I, 52
Peanit, TII, 146
Pear, I, 15, 43, 64, 69, 70, $77,128,146,150, \mathrm{II}, 35,3 \varepsilon, 114$ III, $11,33,36,38,57,78,120,131$, IT, 40,52 104, V, 54, 86, 93, 122, VII, i2, 146, 159, VIII 24
blight, III, 58, VIII, 24
Dnchess, III, 36
Dwarf, $\mathrm{I}, 128$
Lawrence, III, 35
Seckel, III, 35
Standard, I, 128
White Doyemne, I, 15
Pecan, V, 105. VI, 101
peltatum, Podophyllum, I V, 15
peregrina, Teronica, II. 35, VII. 48
perfoliatum，Eupatorium，VI，12
Triosteum，III， 134
Peronospura，V，70，VI．©＇
P＋rsian Cantelope，II． 69
Lilac，I，15，V，70，56， 127
Persimmon， $\mathrm{V}, 69,109$
petiolaris，Melianthus，Г， 5 른
Petunia，IV， 10
Phaseolus，III，52， 53
Photinia glabra，IT，13？
I＇hysalis，I，107，IV， 10
I＇lytolacca decandra，VIII，129
phytolaccoides，Asclepias，III， 144
Pig－nut Hickors，V， 105
weed，V，52，VI，12
Pimpernel，IV， 118
Pine，I，24，127，II， $15,91, \Gamma, 100$, IX， 29,32
Austrian， $\mathrm{V}, \mathbf{1 0 0}, \mathrm{IX}, 30,32,33$
Bhotan，Y， 100
Cembra，T， 100
Corsican，「， 100
Pitch，V， 100, IS， 32
Pyrenaian，Γ ， 100
Scotch，III，92，V，100，IX，30，32， 33
White，III， 92, ，$, ~ 97,100,102$, IX，13，29，30， 32
Yellow， $\mathrm{V}, 100$
Pin Oak，I， 157
Pinus austriaca，I，24， $\mathrm{V}, 100$
ccmbra，V， 100
excelsa，$\Gamma, 100$
laricio，V， 100
mitis，「， 100
pumilio， $\mathrm{V}, 100$
pyrenaica， $\mathrm{V}, 100$
resinasa，$\Gamma, 100$
strobus，I， 24
sylvestris，I，24，V， 100
Pitch Pine， $\mathrm{V}, 100, \mathrm{IX}, 32$
Plantago，IV， 142
Plantain，II，10，III．68，IT，142， 143
Plum，I，15，65，140，146，150，II，15，96，III，11，25，27， $32,34,40,41,57,103,120,127,153,163$, IT， 23 ） $29,39,41,104,118,123,124,126, \Gamma, 86,93,109$ VI，127，141，VII，72，159，IX， 2
Chickasaw，I， 53
Columbia，I， 53
Duane＇s Early，IT，142
Greengage，$I, 140$
Miner，I， 53
Wild，I，15， 55
poceoides，Eragrostis，VIII，122
Podophyllum peltatum，IV， 15
Poison Iry，VI， 121
Pokeweed，VIII， 122
Poke Milk－weed，III， 144
Polecat－weed，VI， 121
Polygonum aviculare，Supp．， 47 hydropiper，III，70，VI， 12
Poplar，II，91，III，72，73，120，127，135，153，168，IV， 123，126，V，136，VI， 105
Lombardy，I，150，157，II，89，VII， 160
Silver，III，156， 168
Silver－leaf，VLI， 160
Populus monilifera，II， 119
－reina，Cierya，V， 10 J

Post Oak，I，157，IT．42，66．134，「，132．VI，64．115， VII． 97
Post Oak Grape，TVI， 79.
Potato，I，91，93，95，96，97，98，99，100，101，158，II， $42,56,57,70,114$, III， $98,105,111$, IV 5^{\prime} ， $10,11, ~ \Gamma, 18,111,112,114$, V＇I，11，VII，2，47， $146,159,169,172$, VIII， $1,25,37,119$, IX， 39
Cbili No．2，III， 101
Early Goodrich，I，100，III，101，V， 51 Rose，III，101，IV， 11
Harrison，I， 110
King of the Earlies，IV， 11
Mercer，III， 101
Peach－blow，I，97，98，99，III， 101
Peerless，III， 101
Pink－ese，III， 101
Quaker Russet，I，$\$ 8$
Russet，III， 101
Shaker，III． 101
Potentilla，III， 82
verna，I， 143
Poterium sanguisorba，I， 143
Prickly Mesquit Grass，VII， 192
Prostrate Currant，IX， 2
prostratum，Ribes，LX， 2
Prune，III， 40
Prunus，VI， 141
americana，I， 15
lauro－cerasus， $\mathbf{V , 3 3}$
serotina，V， 136
pubcrula，Tucea，V， 153
pumilio，Pinus，「， 100
Pumpkin，I，79，II，42，III，105，VIII， 25
Purple－fringe，VI， 119
purpurascens，Asclepias，III， 144
Purslane，II，10，III，112，141，V，69，VI，158，VII， 46，47，VIII，122， 123
Speedwell，II，35，VII， 48
Pyrenaian Pine V， 100
pyrenaica，Pinus，T， 100

12.

Quaker Rússet Potato，I， 98
Quercus coccifera．VII， 96
falcata，VIII， 182
incana，IF， 114
infectoria，$\Gamma, 18$
serrata，IV， 130
Quince，I， $43,65,150, \mathrm{II}, 35,114, \mathrm{II}, 30,35,36,38$ ，
IV，39，41，126，132，VII，48，Supp．， 79
quinquefolia，Ampelopsis，I，132，II， 74

R．

racemosus，Symphoricarpus，II， 113
radicans，Bignonia，III，64，VI， 87
Radish，I，156，IV，36，V，111，VII， 159
Rambo Apple，V， 86
Raspberry，I，70，139，II，34，III，72， $\mathrm{V}, 120,123$ ， VI，111，VII， 48
Doolittle，VI， 111
ravenelii，Cordyceps，Supp．， 53
Rawles Janet Apple，III， 34
Rebecca Grape，V，59，VI， 48

Teel Astrachan Apple, V. At
Bud, III, 7 ?
Cedar, I, 150, IV. 51, VII, 159, V'IIL i19. IX. 30
Currant. II, s. 9, VI. 12. IX, 2
-Howered Currant, IX. .
June Apple, IV, 52
Mulberry, IV, 100
Oak, I, 14, V, 132, VI, 115
Pine, $\mathrm{V}, 100$
Romanite Apple, V, 86
root, II, 35, IV, 104, VII, 48
Rentz Grape, V, 64, VI, 81, VII, 115
resinosa, Pinus, V, 100
retrotlexus, Amaranthue, VI, 12
Rhammus jujuba, IV, 138
Rhubarb, IL, 123, III, 51
theus aromatica, II, 58, VI, 121, IX, 6 copallina, II, 58, VI, 119
coriaria, IV, 118
entinues, VI, 119
glabre, II, 58, VI, 119
toxicodendron, V, 127, VI, 121
typhina, VI, 19
Rilies aureum, IX, 2
foridum, IX, 2
grossularia, IX, a
nigrum, IX, 2
prostratum, IX, 2
rubrum, IX, 2
sanguineum, IX, 2
spcciosum, 1Х, 2
Ricinus communis, IV, 112
riparia, Titis, IV, 60, 61, 63, V, 62, 65, 116, 118, VI, $36,47,45,58,72,73,74,75,93$, V II, 96
River Bank Grape, IF, 60, 63, V, 116, 117, VI, 36, 47
Riverside Grape, VI, 72
robustum, Solanum, IT, 10
Rogers' Grape, I, 30, II, 92, V, 66
Hybrid Grape, I, 30, V, 117, VI, 80
Fome Beauty Apple, I, 71
Rosacece, V, 86
Ruse, I, 70, 146, IIL, 120, 124, 127, IV, 126, V, 109, 123'
127, VI, 127, V II, 159, Supp., 57
Wild, $\mathrm{V}, 126$
Fostratum, Solanum, I, 102, 108, IV, 10, VII, 1
rubra, Morus, IV, 100
rubrum, Ribes, IX, 2
Rubus, V, 154, VI, 113, Supp., 72
Iulander European Grape, VI. 77, 78
Grape, V, 65, VI, 47, 48, VII, 111
rupestris, Vitis, IV, 60, VI, 73, i4
mpicola, Fucca, V, 157
Russet Potato, III, 101
Rutabaga, II, 113, VII, 159, V III, 143
Rye, I, 160, II, 29, 44, 54, III, 111, VII, 38, 146, 168, VIII, 27, 49, IX, 51
saccharimum, Acer, IV, 108
Salem Grape, V, 65, 66, VI, 48, 79
Sa'ix, VI, 136
cordata, IX, 20
humilis, V, 132
Salvia trichostemmoides, VIII, 119

Sand Bur, VIII, 9. 13.2
(rrape, IV, 60, VI, 73
sanguinate, Panicum, V III, 122
sanguineum, Ribes, IX, 2
sanmisorba. Poterime, I, 143
Sorracenia, III, 155
Sassaftas, 1 V, 123, V, 122, 13t, 136, VI, 127
sative, richorimm, I, 79
Madia. VI, 5.5
scandens, Senecio, Supp, 78
Scegets Grape, T, 66
Scotch Pine, III, 92, V, 100, IX, 30, 32, 33
Screw-bean, I, 65
Serub Oak, ILI, 163
Willow, II, 90, III, 168, V, 132
Scupperuong Grape, III, 77, IV, 62, 64, VL, 50, 76, V1I, 106
Seckel Pear, IIL, 36
Segar-hox Grape, VII, 107
senecio scandens, Supp., 78
serotina, Cerasue, III, 120
Promus, V, 136
serotinum, Eupatorium, I, 152
serpentina, A, istolochia, II, 116
serrata. 'l"ereus, IV, 130
serrulata, Alnus, III, 80
sesquipedale, ingriocum, V, 153
setigera, Stipa, VII, 192
Shag bark Hickory, II, 33, IV, 54, V II, 48
Shaker Potato, III, 101
Shell-bark Rickory, IV, 66, V, 103, 105
Shepherd's Purse, II, 10
Showy Gooseberry, IX, 2
sieglinge, Solanzm, IV, 10
silkweed. III, 144
Silrer Maple, I. 150, V, 13 ̄̄
Poplar, IHI, 156, 163
-leat Poplar, VII, 160
stpho, Aristolochia, II, 116
Sisymbrium oficinale, V I, 12
Smartweet, II, 10, III, 68, 70, VI, 12
Smoke-tree, VI, 121
Smooth Sumach, ГI, 119
Svowberry, I, 153, 154, II, 113, Supp., 81, 82
snowdrop-tree, IV, 123
Sott Maple, I, 47, 150, IV, 42, V, 120, 137, VI, 108,
Supp., 55, 62, 74
Solenacew, IV, 10. V II, 146
Solumum carolinense, I, 103, 107, 108, II, 105, IV, 10, VIII, 122
cornutum, IV, 10
discolor, IV, 10
eleagnifolium, Supp., 54
nigrum, VI, 12
robustum, IV, 10
rostratum, I, 102, 108, IV, 10, VII, 1, VIII, 9,10,122
sieglinge, IV, 10
tuberosum, II, 56, VIII, 9
warscewiczi, I下, 10
Solidago, V, 154
missouriensis, I, 174
nemoralis, I, 173
Sonora Grape, IF, 64
Sorghum, II, 23, 44, 54, VII, 146, 159, VIII, 27
Soulard Apple, V, 87

Som Cherry, V'II, 159
Southeru Fox Grape, II1, 77, IV, 60, 62, 63, VI, 48, 72, 75
Spanish Chestnut. IV, 56
speciosum, Ritcs, IX, 2
Spice-bush, IV, 123
Spinach, IL, 113
Spiraea, V, 154 ulmaria, III, 51
Spruce, III, 112 Norway, I, 150, VП. 172, VIII 119, IX, 30
Squash, II, 64, 66, 70
Staghorn Sumach, VI, 119
Standard Pear, I, 128
St. Augustine Grape, V, 63
Stellaria media, I, 179
Stickseed, $\Gamma, 52$
Stink-weed, VI, 121
Stipa setigera, V11, 192
St. John's Wort, II, 10
stramonium, Datura, Г, 56
Strawberry, I, 142, 143, 157, I1, 34, III, 11, 42, 43, 82, 83,105, IV , 34, Г, 114, VII, 46, 47, 45, 159, IX, 27
strictum, Echinospermum, $\Gamma, 52$
String bean, III, 105
strobus, Pinus, I, 24
Strombocarpa inonoica, I, 65
strumarium, Xanthiuin, I, 92
Sugar Grape, $1 \Gamma, 61$
Sumach, I, 100, II, 58, III, 130, V'I, 118, 127, VII, 160 Dwarf, VI, 119
Fragrant, VI, 121, IX, 6
Smooth, VI, 119
Staghorn, VI, 119
Venetian, VI, 119
Summer Grape, III, 89, 90, IV, 60, 63, VI, 47, 72 Rose Apple, , $\mathrm{V}, 86$
Sanflower, III, 68, 131, IV, 142, V, 52, Supp., 53
Swamp Rose-mallow, VI, 92
Sweet Cherry, V II, 159
Gum, IV, 123, 124, 140
June Apple, $V, 75$
-potato, I, 100, II, 56, 57, 58, 60, 61, 62, 63, VII, 146
Bermada, II, 61
Brazilian, II, 61
Nansemond, II, 61
Sycamore, I, 150, III, 114, 127, IF, 126, 129, VI, 128, IX, 127
sylvestris, Malva, VI, 89 Pinus, I, 24, V, 100
Symphoricarpus raceinosus, II, 113
vulyaris, I, 153

' \mathbf{T}.

Tallmar's Sweet A pple, III, 35
Taylor Grape, I, 30, I11, 87, IV, 63, 64, V, 63, 65, 66, VI, 36, 47, 48, 68, 80, 95, FII, 102, 115
Bullet Grape, VI, 73
Teasel, IV, 112
Telegraph Grape, V, 65, VI, 47, VII, 106
Thistle, I, 180, II, 10, 112, III, 67
Canada, II, 10
Thorn, III, 120, IV, 126
-apple, IV, 10
Thoroughwort, VI, 12
Thuja occidentalts, I 24
thunbergii, Titis, VI, 71
Tilia, I $\Gamma, 126$
Timothy, III, 111, VII, 38, 146, V1II, 39, 49, 50, 143. IX, 31
Tinto Grape, VI, 36
Toad-flax, Π, 10
Tobacco, I, 80, 96, 105, I V, 10. ГII, 146, 159
Tokay Grape, V, 66
Tomato, I, 80, 92, 95, 107, 108, II, 105, IV, 10, T1, 15, VII, 146
tomentosa, A ristolochia, II, 116 Cratcegus, III, 36
Tonzaru, IV, 136
Torrubia cinerea, VI, 123 militaris, VI, 123
toxicodendron, Rhus, V, 127, VI, 121
-Transcendent Crab, I, 15
Trees, growth of trunk of, VI, 98
trichostemmoides, Salvia, VIII, 119
trijida, A mbrosia, Supp., 56
Triosteum perfoliatum, III, 134
Trumpet Creeper, III, 64, VI, 87
tuberosa, A sclepias, III, 144
tuberosum, Solanum, II, 56, TIII, 9
tuberosus, Helianthus, V III, 143
tuckeri, Oidium, V, 57, 70, VI, 30, 63, 79, 85, IX, 43
tulipifera, Liriodendron. Supp., 55
Tulip tree, IV, 123, Supp., 55
Turaip, I, 101, II, 105, 114, III, 11, 109, 111, 141, IV
36, V, 69, 111, 114, VII, 159, VIII, 143
typhiva, Rhas, ГI, 119

C.

ulmaria, Spircea, III. 51
Ulmus, V' I, 137
Urticacea, I「, 100
V.
vaginceflor*, Tilfa, ГILI, 122
Vemango Grape, VI, of
Tenetiau Sumach, VI, 119
Terbascum, V, 35, V1I, 14
Terbena, III, 68
vernar Potentilla, I, 143
Ternonia, V, 136
fasciculata, I, 153
novabboracensis, TIII, 119
Teronica peregrina, II, 35, TII, 48
Vilfa, VIII, 123
Filfa vaginaeftora, VIII, $122 \cdots \frac{\cdots}{}$
vinifera, Titis, IV, 55, 63, V, 65, VI, 32, 47, 48, 72, 74. 78,80, 85
Virginia Creeper, II, 78, 86. III, 77, VI, 88
virginiana, Juniperus, I, 24
Virginia Seeuling Grape, I $\Gamma, 61$, VI, 74
Fitis aestivalis, III, 89, 96, IV, 60, 61, 63, VI, 36, 47.
$48,72,74,75,80$, V II, 103
arizonica, IV, 60, VI, 73, 76
californica, IV, 60, VI, 73
candicans, $1 \Gamma, 60, ~ \Gamma 1,73,76$
cordifolia, III, 87, $88,89,90$, I $\Gamma, 60, \Gamma, 66,118$. V1, 36, 73, 74, 75, 76, VII, 96
labrusca, III, 87, 89, 90, I V, 60, 63, V, 60, 65, 66, $118, ~ \Gamma 1,36,47,48,71,72,74,75,76$, VII, 103
lincecumii, VI, 74
monticola, VI, 57, 74
mustungensis, IV, ©i2. VI. 76

Vitis riparia, IV, 60, 61, 63, V, 62, 65, 116, 118, V1, 36 ,
$47,48,58,72,73,74,75,95$, VII, 96
rupestris, IV, 60, VI, 73, 74
thunbergii, VL, 71
vinifera, IV, $55,63, V, 65, V I, 32,47,48,72,74$, 78,80, 85
vulpina, III, 77, 90, IV $, 60,63$, V, 66, 118, V1. 48, 49, 72, 75, VIL, 106
vulyuris, s!mmphoricarpues, I, 153
vulpina, Vitis, III, 77, 90, 1 V, 60, 63, V, 66, 118, VI, 48, 4® 72, 75, VII, 106

w.

Walter Grape, V, 59, 6ie, V L, 80
Walunt, 1, 153, III, 12.5, 126. 127, IV, 42, 124, 126
Black, I, 153, IlI, 131, IV, 82, VII, 160, supp., 54
Warren Grape, V II, 102
varsceviczi, Solanum, IV, 10
Watermelon, III, 141
Water-weed, II, 11, IX, 43
Weelawken frape, V, 59
Weeping Willow, II, 109
Wheat, I, $79,87,88,159,160,11,16,17,23,21,30,42$, $44,54,55$, III, 110, 111, 112, 115, 116, VII, 25, 27, 34, $38,146,165,173$, VIIL, 25, 27, 49, 59, I43, IS, 51, 52, Suplp., 5 o
whipplei, Tuced, V', 157
White-berry, II, 113
Doyemne Pear, l. 15
Elm, I, 123
(riouk) fungus, I. 158, VI, 123, 125
Hellebore, IX, 13
Mulberry, I, 7:, 73
O.ık, III, 120,127, V I, $6 t, 115$

Pine, IIT, 92, V,97, 100, 102, IX, 13, 29, 30, 32
Riesling Grape, VII, 102
Sootelı Cluster Grapas, V1, 77
Thorn, IV, 13د, V, 86
Willow, IV, 72, V, 120
-wood, II, 91
Whortleberry, III, 163, Supp., 83

1) I O

Wilal Black Curmant, IX, a
Cherry, IV, 123
Crab, IV, 42, Suppr, 80
Entlive, 1, 79, 83
Plim, I, 15, 5.5
lose, V, 126
Willer Grape, IV, 63, V, 62, 63, VL, 48, 81, VII, 101, $102,111,116$
Windsor Bean, I, 98, III, 51
Winesap Apple, IV,45
Wintur 'rape, IV, 60, VI, 73
Willow, I, 24, ILI, 120, 153, 155, 163, 168, I F, 104, 112, $124,126,142$, V, 127,136 , VI, 162, VII, 160
Golden, III. 168
Heart-shaperl, IX, 20
Surub, II, 90, III, 168, V, 132
Twig Apple, V, st
Wreping, Il, 109
White, IV, 72, V, 120
Witch Mazel, III, 120
Wormwood, V, 35

I.

Kanthium, VII, 159
strumarium, I, 92, IIL, 60
1.

Tellow Bellflower Apple, IV, 45
Yellow Pine, V, 140
Tork Madeira Trape, IV, 64, V, fit
Yueea, Y, 153, 159, 160, VI, 132, 133, 135, VIII, 169, I. $\mathrm{K}, 129$

Fue"a alnifolia, V, 133, VIII, 171, 178, IN, 129
anytestifolia, V", 157, 159, VIII, 169
filaimentosa, V, 15s, 159, V III, 171
jluecida, V, 159
glauect, V, 15;
gloriosel, V, 159, 171
puberula, V, 1.3
rupicole, V, 157
whipplei, V, 157

ERRATA.

Page III, line 9, for Classifed read Classified.
Page 60, line 17, for leucanee real leucanee.
Pages 93, 94. In making up these pages several of the names got misplaced. "Orgyia" and "Thyridoptergx," on p. 94 should follow "Eepantheria" on p. 93. "1tamatopis," on p. 94, shonld follow "Enfitchia," on p. 93. "Prombla" and "Galteria," p. 94, should follow "Carpocapsa," on the same page ; "(Estrins" shonld follow "Pipiza" on the same page.
Sage 94. After line 10 ath "Gelechia gallasolidaginis, larra and pupa: I, 173-174."

[^0]: ** No book or pamphlet is to be removed from the Lab-

[^1]:

[^2]: The Apple-tree Tent-caterpillar, or American Lackey-mothThe web-nests of the caterpillar and inportanee of their destruction, 118 - The egg-mass, 118-The caterpillar and its habits, 119 - Transformations of the inseet, 119 - The imago very variable in color, 119 -Food-plants of the caterpillar, 120-Remedies, 120-Parasites and euemies, 120.

[^3]: *For an excellent statement of the facts bearing upon this curious question. see a paper by Mr. Riley, the State Entomologist of Missouri, in No. 4 of the American Entomologist, and a still more complete one in his First Annual Report.

[^4]: ＊Etudes sur les Orthoptères，（in Mission Scientifique au Mexique，etc．Recherches Zoologiques $6^{\text {me }}$ partie．） $3^{\text {me }}$ livraison；p． $462 ; 1874$.
 ＋By＂abortive＂is evidently meant，from the description following the diagnosis，simply shotter than abdomen．In this respect and in the male（which alone is described）being shorter than niveus， californicus，which I know only from the description，may most easily be distinguished．
 \ddagger Walker，Cat．Derm，salt．Brit．Mus．，Pt．I，p． 109.

